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Clearing Opacity Through Machine 
Learning 
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ABSTRACT: Artificial intelligence and machine learning represent powerful 
tools in many fields, ranging from criminal justice to human biology to 
climate change. Part of the power of these tools arises from their ability to make 
predictions and glean useful information about complex real-world systems 
without the need to understand the workings of those systems. 

But these machine-learning tools are often as opaque as the underlying 
systems, whether because they are complex, nonintuitive, deliberately kept 
secret, or a synergistic combination of those three factors. A burgeoning 
literature addresses challenges arising from the opacity of machine-learning 
systems. This literature has largely focused on the benefits and difficulties of 
providing information to lay individuals, such as citizens impacted by 
algorithm-driven government decisions. 

In this Essay, we explore the potential of machine learning to clear opacity 
—that is, to help drive scientific understanding of the frequently complex and 
nonintuitive real-world systems that machine-learning algorithms examine. 
Using examples drawn from cutting-edge scientific research, we argue 
machine-learning algorithms can advance fundamental scientific knowledge 
and that deliberate secrecy around machine-learning tools restricts that 
learning enterprise.  
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Our argument is more than a general plea for the innovation-related benefits 
of open science, or even a call for special attention to the unusually strong 
competitive protection secrecy can provide in the arena of machine learning. 
Rather, because the counterintuitive results machine learning can produce 
must be scrutinized particularly closely to distinguish exciting new hypotheses 
from spurious or otherwise misleading correlations, openness is particularly 
critical.  

Turning to practical questions of law, institutions, and economics, we 
examine why developers are likely to keep machine-learning systems secret. We 
then draw on the innovation policy toolbox to suggest ways to reduce secrecy 
so that machine learning can help us not only to interact with complex, non-
intuitive real-world systems but also to understand them. 
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I. INTRODUCTION 

A substantial literature has arisen around worries that machine learning 
and artificial intelligence are opaque, or “black boxes.” Many of these worries 
are legitimate. But a focus on these worries has led to an underappreciation 
of the ways that machine learning can help us remove opacity and understand 
the underlying real-world systems better. 

Particularly in its more complex manifestations (e.g., deep-learning 
convolutional neural nets), machine learning functions quite differently from 
standard software used to perform analyses and predictions. While standard 
software applies explicit, human-designed decision rules to data—rules that 
humans designed with (we hope) some level of understanding of the 
underlying systems—machine learning algorithms do not, prior to their 
exposure to data, embody prediction rules. 

Instead, machine learning algorithms learn directly from the data. In the 
common manifestation called “supervised learning” on which this paper 
focuses,1 the data scientist exposes the learning algorithm to data that experts 
in the field have curated with respect to input features and then classified with 
respect to output labels. To put it more plainly, an algorithm could be given 
100,000 X-rays of human lungs of which 5,000 have been labeled by 
radiologists as showing cancerous tumors. Assuming the radiologists and data 
scientists have done their job properly, this dataset should represent 
something close to “ground truth,” or the underlying accurate reality.2 
Learning or “training” a model involves a process in which, over a series of 
iterations, model parameters for translating inputs into outputs are adjusted, 
and model predictive performance tested, until predictive performance 
cannot be improved.3 Once the machine learning model has been trained, it 
is generally applied to a subset of the training data to which it had not 
previously been exposed, known as “test” data, to see how well it performs on 

 

 1. As contrasted with supervised learning, unsupervised learning that does not need highly 
curated data is not as far advanced. Because the costs of proper data curation by experts are often 
nontrivial, unsupervised learning has been described as the “holy grail” of data-based machine 
learning. Andrew Ng, Foreword to WORLD INTELL. PROP. ORG., WIPO TECHNOLOGY TRENDS 2019: 
ARTIFICIAL INTELLIGENCE 8, 8 (2019) [hereinafter WIPO REPORT]. In addition to supervised and 
unsupervised learning, other forms of machine learning include reinforcement learning and 
multi-task learning. For a user-friendly diagram of the different types of techniques that are 
sometimes called “AI” (including but not limited to machine learning), see id. at 42 figs.3.5 & 
3.6. For the purposes of this Essay, the taxonomy of the WIPO report is particularly useful  
because the report gives metrics of patent filings and scientific publications based on its  
taxonomy. According to WIPO patent data, machine learning is the dominant “AI” technique, 
“represent[ing] 89 percent of patent families related to an AI technique [and] 40 percent of all 
AI patent families.” Id. at 41. The representation of machine learning in the scientific literature 
on AI methodologies/techniques stands at 64 percent, which constitutes 54 percent of all 
scientific publications on AI. Id.  
 2. See generally GARETH JAMES, DANIELA WITTEN, TREVOR HASTIE & ROBERT TIBSHIRANI, AN 
INTRODUCTION TO STATISTICAL LEARNING (G. Casella, S. Fienberg & I. Olkin eds., 2013) (aiming 
to bring statistical learning into the mainstream). 
 3. See, e.g., David Lehr & Paul Ohm, Playing With the Data: What Legal Scholars Should Learn 
About Machine Learning, 51 U.C. DAVIS L. REV. 653, 695–701 (2017). 
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new data.4 In the best-case scenario, the model is also applied to data from an 
entirely new source to further validate its performance.5 

Why use machine learning? It’s especially useful to apply to the large 
number of systems (physical, social, or some combination of the two) where 
human field experts haven’t yet figured out how the systems work.6 In those 
cases, machine learning can examine hundreds or thousands of potentially 
relevant input variables and can, if properly tested and validated, be very 
helpful for generating accurate predictions.  

Biomedicine is an example where human experts often don’t understand 
what is going on due to systemic complexity, and machine learning can be 
helpful. Consider the WAVE surveillance model that was recently approved 
by the FDA. This model predicts vital sign instability in hospital patients and 
triggers alerts so that rapid-response nurse-led teams can intervene to stabilize 
the patient. The learning algorithm’s training data came from the electronic 
health records of patients who had experienced such instability. When the 
model and response procedures were implemented, the average duration of 
instability decreased substantially.7  

From an epistemological standpoint, it is perhaps not surprising that 
complex research tools are useful for studying complex systems.8 Biomedicine 
is far from the only example. The world is full of complex systems that experts 
do not yet understand, for which accurate predictions could improve social 
welfare. Medicine, climate change, traffic patterns, criminal recidivism, and 
many other fields provide potential use cases for accurate machine-learning 
tools.  

Unfortunately, these models are often opaque. Even when human field 
experts are given full access to the learning algorithm, training data, training 
process, and resulting model, the models can be difficult to parse because 

 

 4. Id. at 684. 
 5. Adarsh Subbaswamy & Suchi Saria, From Development to Deployment: Dataset Shift, Causality, 
and Shift-Stable Models in Health AI, 21 BIOSTATISTICS 345, 345–46 (2020). 
 6. Machine learning’s distinctive characteristics can be highlighted through comparison 
with (for example) conventional linear regression analysis. In the latter analysis, the human field 
expert has—or at least should have—some understanding of the system being studied and can 
therefore specify a relatively small set of relevant input variables. Only the coefficients attached 
to the small number of input variables are determined by the software. Moreover, those 
coefficients are determined by source code that can be understood by the data scientist. And 
because the human analyst specifies the input variables for a reason, ideally a reason that has a 
plausible causal interpretation, the human analyst should be able to explain her output results. 
 7. Ravi B. Parikh, Ziad Obermeyer & Amol S. Navathe, Regulation of Predictive Analytics in 
Medicine: Algorithms Must Meet Regulatory Standards of Clinical Benefit, 363 SCIENCE 810, 811 (2019). 
To be sure, as the authors point out, reducing vital sign instability may not, in and of itself, be 
meaningful clinically. Id. More generally, the evidence of performance that the FDA required in 
approving the algorithm was not necessarily optimal. Id. 
 8. Of course, in some cases, complex systems can usefully be probed by simpler tools. We 
make only the modest claim that, in certain cases, probing by simpler tools has not been fruitful. 
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they are often complex and nonintuitive. The legal literature is accordingly 
replete with concern about machine learning’s “black box” nature.9  

In this Essay, we take a position on opacity that is, at best, 
underrepresented in the legal literature. We begin by noting that opacity in 
machine learning happens at two related layers: the opacity of the system 
being studied (what we call “system opacity”) and the opacity of the research 
tool—machine learning—being deployed to study it (what we call “tool 
opacity”). Both the underlying real-world systems and the machine-learning 
models built to probe them can be both complex and nonintuitive. We argue 
that even though the tool may be opaque, concerns about tool opacity should 
not overshadow the considerable promise associated with using the tool to 
clarify system opacity.  

Such clarification will be impeded, however, unless a third type of tool 
opacity—deliberate secrecy around machine-learning tools—is addressed.10 
In general, the strength of secrecy as a competitive shield is a function of a 
competitor’s ability to reverse engineer or independently invent the 
information that is being kept secret. In the case of complex machine-
learning systems with non-intuitive outputs, challenges associated with reverse 
engineering may allow secrecy to persist for long periods of time.11 
Meanwhile, it is precisely these non-intuitive outputs that should be most 
open to the type of robust scrutiny that can help distinguish promising new 
hypotheses from spurious or otherwise misleading correlations.  

Because we focus on clearing system opacity, we consider how secrecy 
impacts the work and understanding of field experts—for example, life 
scientists striving to understand and influence human biology12 or climate 

 

 9. See, e.g., Ashley Deeks, The Judicial Demand for Explainable Artificial Intelligence, 119 
COLUM. L. REV. 1829, 1829 (2019) (“A recurrent concern about machine learning algorithms is 
that they operate as ‘black boxes.’”); Katherine J. Strandburg, Rulemaking and Inscrutable 
Automated Decision Tools, 119 COLUM. L. REV. 1851, 1858, 1863–64 (2019) (arguing that 
algorithmic inscrutability is problematic by analogy to rulemaking); Sandra Wachter, Brent 
Mittelstadt & Chris Russell, Counterfactual Explanations Without Opening the Black Box: Automated 
Decisions and the GDPR, 31 HARV. J.L. & TECH. 841, 842–44 (2018). 
 10. We do not address fully certain aspects of tool opacity. Some computer scientists have 
argued, for example, that attempts to use machine learning to “explain” what other machine 
learning is doing are, at best, statistical approximations and should be avoided, at least in high-
risk contexts, in favor of trying to design models that can be understood by humans. Cynthia 
Rudin, Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use 
Interpretable Models Instead, 1 NATURE MACH. INTEL. 206, 206, 208 (2019); see also Jenna Burrell, 
How the Machine ‘Thinks’: Understanding Opacity in Machine Learning Algorithms, BIG DATA & SOC’Y, 
Jan.–June 2016, at 1, 3–5 (clarifying different forms of opacity in machine learning). We address 
machine learning tools that explain machine learning primarily to the extent that they prove 
useful for generating new hypotheses about the opaque physical or social systems being studied.  
 11. To be sure, this is not an absolute rule and the state of the art in reverse engineering is 
always improving. See infra text accompanying notes 71–72. 
 12. Diogo M. Camacho, Katherine M. Collins, Rani K. Powers, James C. Costello & James J. 
Collins, Next-Generation Machine Learning for Biological Networks, 173 CELL 1581, 1581 (2018) (“[I]t 
is becoming imperative to focus our data-analytical approaches on tools and techniques 
specifically tailored to handle large, heterogeneous, complex datasets. Machine learning . . . aims 
to address this complexity, providing next-level analyses that allow one to take new perspectives 
and generate novel hypotheses about living systems.”). 
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scientists seeking to understand weather patterns so as to provide advice to 
policy makers13—rather than how secrecy affects lay individuals who may be 
influenced by algorithmic decisions, such as patients or populations in areas 
vulnerable to severe weather. Although the concerns of field experts who 
hope to clear system opacity are obviously less immediate than those faced by 
individuals directly impacted by algorithms, the latter set of concerns is 
—fortunately for our project—already the subject of a substantial literature.14 
Indeed, in the case of human biology, Congress has already determined that 
“black box” impacts on lay individuals are sufficiently concerning that they 
provided a statutory foundation for FDA regulatory authority.15 Throughout 
this Essay, we draw upon the accountability-related insights of this prior 
work.16 

Going beyond this prior work, we argue here that developer secrecy 
surrounding tools substantially hinders the ability of machine learning to 
elucidate system opacity. Ours is more than a general argument in favor of 
open science, or even a call for attention to the unusually potent competitive 
power of secrecy in machine learning.17 Rather, openness surrounding non-
intuitive outputs produced by machine learning is particularly important, 
because it sheds light in one of the areas where such light may be needed 
most. 

 

 13. MACHINE LEARNING AND DATA MINING APPROACHES TO CLIMATE SCIENCE, at v (Valliappa 
Lakshmanan, Eric Gilleland, Amy McGovern & Martin Tingley eds., 2015) (“[B]ecause the goal 
of machine learning in climate science is to improve our understanding of the climate system, it 
is necessary to employ techniques that go beyond simply taking advantage of co-occurrence and, 
instead, enable increased understanding.”); Nicola Jones, Machine Learning Tapped to Improve 
Climate Forecasts, 548 NATURE 379, 380 (2017); David Rolnick et al., Tackling Climate Change with 
Machine Learning, ARXIV:1906.05433V1, at 1, 53 (2019), https://arxiv.org/pdf/1906.05433v1.pdf 
[https://perma.cc/DDJ5-P68M] (stating that machine learning has the potential to lead to 
causal models for “understanding weather patterns, informing policy makers, and planning for 
disasters”). 
 14. Much of the literature on layperson effects focuses on algorithms developed by social 
scientists to predict behavior in criminal and civil contexts and addresses not only machine-
learning algorithms but also ordinary algorithms protected by secrecy. See generally, e.g., FRANK 
PASQUALE, THE BLACK BOX SOCIETY: THE SECRET ALGORITHMS THAT CONTROL MONEY AND 
INFORMATION (2015) (discussing the use of algorithms tracking individual behaviors by 
corporations and how their decisions about how to use that data affect our lives); Rebecca Wexler, 
Life, Liberty, and Trade Secrets: Intellectual Property in the Criminal Justice System, 70 STAN. L. REV. 1343 
(2018) (developing an “account of trade secret evidence in criminal cases and develop[ing] a 
framework to address the problems that result”).   
 15. 21st Century Cures Act, 21 U.S.C. § 360j(o) (2018). 
 16. That said, the level and type of disclosure necessary for appropriate accountability to 
those who are affected by machine-learning likely differs from that necessary in the scientific 
context. For example, disclosure sufficient for reproducibility is, at least in principle, required by 
patent law and by scientific norms of publication, see infra Section III.C, but may not be useful or 
necessary for appropriate accountability to lay persons.  
 17. See, e.g., W. Nicholson Price II, Big Data, Patents, and the Future of Medicine, 37 CARDOZO 
L. REV. 1401, 1432–36 (2016) [hereinafter Price, Big Data, Patents, & Medicine] (describing the 
power of secrecy to limit competition in medical AI). As we discuss below, cloud-based machine 
learning models can be particularly difficult to reverse engineer. 
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Accordingly, we suggest mechanisms for combating secrecy. More 
specifically, we draw upon innovation policy scholarship to provide a toolkit 
for overcoming secrecy. This scholarship, which addresses levers for 
promoting socially beneficial innovation, yields insights that have largely been 
elided both by law and technology commentators and by commentators 
focused on competition policy. As to the former, commentators have typically 
seen secrecy through the lens of due process, privacy, norms of anti-
discrimination, or other individual rights.18 Competition scholars, meanwhile, 
have often viewed secrecy through the lens of monopoly control over data.19 
In contrast, this Essay invokes innovation policy tools to show how developer 
secrecy endangers the ability of machine learning to advance basic scientific 
understanding—that is, its ability to make the “black box” of many real world 
systems at least a bit grayer.20    

Ultimately, innovation policy provides a perspective that harnesses 
machine learning to clarify system opacity over the medium to long term, yet 
is also grounded in shorter term practical institutional and economic 
considerations. Innovation policy has a history of addressing opaque systems, 
including opaque systems (e.g., biological systems) that are probed by 
research tools or interventions that are themselves opaque (e.g., biomarkers 
or biologics). Accordingly, it suggests mechanisms for organizing, and 
grappling with, the full range of interrelated challenges associated with 
opacity in machine learning. These interrelated challenges include a level of 
model complexity that precludes full understanding—or easy reverse 
engineering—by human field experts; secrecy, unpredictability, and a 
concomitant lack of reproducibility; and ultimately the normative goal that 
this Essay adopts—providing incentives for production of accountable 
predictive performance in the short term, robust disclosure in the medium 
term, and deeper understanding in the medium to long term. 

For a number of reasons, we focus in this Essay on the applications of 
machine learning in the health-related life sciences. First, not only does 
 

 18. See, e.g., Margot E. Kaminski, Binary Governance: Lessons from the GDPR’s Approach to 
Algorithmic Accountability, 92 S. CAL. L. REV. 1529, 1537–52 (2019) (describing instrumental/ 
error-correction, justificatory/legitimacy, and dignitary reasons for demanding algorithmic 
accountability). 
 19. See infra text accompanying note 70. 
 20. Thanks to Kevin Collins for this phrase. A recent, insightful analysis by intellectual 
property scholar Jeanne Fromer sounds some themes similar to those in our Essay. See generally 
Jeanne C. Fromer, Machines as the New Oompa-Loompas: Trade Secrecy, the Cloud, Machine Learning, 
and Automation, 94 N.Y.U. L. REV. 706 (2019) (discussing computing machines and the effect 
trade secret law has on data input). Fromer makes the point that, from the standpoint of 
cumulative innovation, trade secrecy surrounding machine learning may prove excessively 
protective and offers some suggestions for reducing its potency. Id. at 727–36. Our analysis 
diverges from Fromer’s on two principal grounds. First, we focus on what we consider the subset 
of cumulative innovation for which we believe disclosure is most important—non-intuitive results 
that may be spurious or may be accurate, with the latter possibility leading to a result that 
ultimately clears system opacity. Second, we believe the challenges posed by trade secrecy in 
machine learning are best addressed not by changes in trade secrecy law (absent trade secrecy 
law, for example, machine learning developers might just use more robust mechanisms to 
preserve actual secrecy) but through other mechanisms. 
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conventional health care represent a large part of the U.S. economy (17.7 
percent as of 2018),21 but human health more generally is a critical 
component of social welfare. Second, the life sciences are rife with opaque 
systems; human biology is notoriously complex, and many diseases, systems, 
and challenges lack any clear explanation. To cite just one salient example, 
we still lack an understanding of the underlying mechanism of Alzheimer’s 
Disease, despite millions afflicted and billions spent on research.22 Not 
surprisingly, then, life sciences researchers have embraced machine learning, 
noting that such approaches are “becoming imperative” for generating new 
hypotheses from biological data.23 Third, the health-related life sciences are 
an area of intense innovation policy interest, in large part for the preceding 
two reasons; they are the subject of large government expenditures, 
numerous policy levers, and focused academic attention (including by the two 
of us). The health-related life sciences, therefore, provide a useful landscape 
to examine the ways in which policymakers can use the innovation policy 
toolkit to promote machine learning that clears system opacity. 

Although we focus on the example of health-related life sciences, the 
Essay’s analysis should be applicable to contexts where the incentives of key 
actors can plausibly be aligned with the normative goal of using machine 
learning to advance scientific knowledge: both accountable prediction and 
more basic understanding. The climate science community, for example, is 
primed to benefit from this Essay’s analysis as its members become more 
comfortable with machine learning.24 

In contrast, in institutional contexts where gaming of, and adversarial 
attack on, the machine learning model are first-order challenges, the Essay’s 
applicability may be more limited.25 

 

 21. National Health Expenditure Data: Historical, CTRS. FOR MEDICARE & MEDICAID SERVS., 
https://www.cms.gov/research-statistics-data-and-systems/statistics-trends-and-reports/national 
healthexpenddata/nationalhealthaccountshistorical.html [https://perma.cc/DBL8-L463] (last 
updated Dec. 17, 2019, 2:19 PM). 
 22. See, e.g., Matthew Herper, One of the World’s Best Drug Hunters Went After Alzheimer’s. Here’s 
How He Lost, STAT (June 6, 2019), https://www.statnews.com/2019/06/06/al-sandrock-biogen-
alzheimers-aducanumab [https://perma.cc/FYJ2-WQC3] (noting the repeated failure of drug 
development efforts in the area, in part due to lack of scientific understanding). 
 23. See Camacho et al., supra note 12, at 1581. 
 24. See Rolnick et al., supra note 13, at 1–2 (“Despite the growth of movements applying 
[machine learning] and AI to problems of societal and global good, there remains the need for 
a concerted effort to identify how these tools may best be applied to tackle climate change.” 
(footnote omitted)). 
 25. See generally, e.g., Jane Bambauer & Tal Zarsky, The Algorithm Game, 94 NOTRE DAME L. 
REV. 1 (2018) (providing an overview of algorithmic gaming concerns); Ignacio N. Cofone & 
Katherine J. Strandburg, Strategic Games and Algorithmic Secrecy, 64 MCGILL L.J. (forthcoming 
2020) (providing a nuanced analysis of how to weigh gaming concerns against the benefits of 
disclosure); Wachter et al., supra note 9, at 851–53 (describing adversarial machine learning 
algorithms). Gaming is of concern, regrettably, in many areas including health. One recent 
commentary argues that reimbursement pressures may cause malevolent health care providers 
to introduce deliberate error into medical machine learning. See generally Samuel G. Finlayson et 
al., Adversarial Attacks on Medical Machine Learning, 363 SCIENCE 1287 (2019) (describing the 
possibility of small deliberate perturbations in medical data to trick medical machine learning 
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Within the standard innovation policy toolkit, public funding and patents 
are supposed to be the regimes most associated with disclosure.26 But theory 
and practice show the limits of both tools in effectuating disclosure. Recognizing 
these limitations, the innovation policy literature has substantially expanded 
the tool kit. 

In the health-related life sciences, where resolution of concerns regarding 
safety and efficacy associated with new products or processes represents a form 
of innovation,27 scholars have highlighted risk regulators as data aggregators 
that could promote disclosure.28 Some of these risk regulation agencies are 
moving forward with experiments on regulating machine learning. The FDA, for 
instance, has started allowing firms with a demonstrated culture of excellence 
and a willingness to expose themselves to ongoing regulatory scrutiny a chance 
to reach the market with lighter up-front scrutiny of their software products.29 
Carefully monitored experimentation should be encouraged. However, the 
lens of innovation policy teaches that regulatory carrots should come with 
disclosure obligations.  

Finally, we advance the idea of promoting disclosure through concerted 
action by demand side market and public sector actors, principally private and 
public insurers.  

Part II of the Essay provides an introduction to the issue of opacity as seen 
through the lens of the field expert. We analyze various components of both 
tool and system opacity. Part III addresses impediments to clearing system 
opacity created by secrecy, particularly secrecy over training data. Part IV 
 
into diagnosing incorrect, but better reimbursed, conditions). Although such malevolence is 
certainly possible, fraudulent “upcoding” could presumably be achieved through simpler means. 
 26. Publicly funded grants typically have requirements for disclosure of final results and of 
research data generated along the way. See W. Nicholson Price II, Grants, 34 BERKELEY TECH. L.J. 
1, 33–34 (2019) (describing disclosure requirements). Patents include disclosure requirements 
as part of the process of applying for a patent; in fact, the word “patent” is derived from the Latin 
patere (to lay open). See 35 U.S.C. § 112 (2018) (enumerating what must be disclosed in a patent 
application); see also generally Jeanne C. Fromer, Patent Disclosure, 94 IOWA L. REV. 539 (2009) 
(providing an analysis of patent law’s disclosure requirements). But see Fromer, supra, at 551 
(noting the possibility of inadequate disclosure); W. Nicholson Price II, Expired Patents, Trade 
Secrets, and Stymied Competition, 92 NOTRE DAME L. REV. 1611, 1617–18 (2017) [hereinafter Price, 
Expired Patents] (summarizing how firms pair incomplete disclosure with secrecy to limit 
competition). 
 27. See, e.g., Rebecca S. Eisenberg, The Role of the FDA in Innovation Policy, 13 MICH. 
TELECOMMS. & TECH. L. REV. 345, 347 (2007) (describing the FDA’s role in innovation, 
represented by the development of safety and efficacy data about drugs); Rebecca S. Eisenberg 
& W. Nicholson Price II, Promoting Healthcare Innovation on the Demand Side, J.L. & BIOSCIENCES, 
Apr. 2017, at 3, 4. 
 28. W. Nicholson Price II, Regulating Black-Box Medicine, 116 MICH. L. REV. 421, 462–65 (2017). 
 29. See generally FDA, DEVELOPING A SOFTWARE PRECERTIFICATION PROGRAM: A WORKING 
MODEL (2019) [hereinafter FDA, SOFTWARE PRECERTIFICATION PROGRAM], https://www.fda.gov/ 
media/119722/download [https://perma.cc/5Q5F-MQFY] (describing the pilot “Pre-Cert” 
program for developers with demonstrated cultures of excellence); FDA, PROPOSED REGULATORY 
FRAMEWORK FOR MODIFICATIONS TO ARTIFICIAL INTELLIGENCE/MACHINE LEARNING (AI/ML)-
BASED SOFTWARE AS A MEDICAL DEVICE (SAMD) (2019), https://www.fda.gov/media/122535/ 
download [https://perma.cc/7MA4-L4QN] (describing a model for managing changes in 
artificial intelligence to lower requirements for supplemental regulatory filings). 
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discusses policy levers, involving both IP and alternatives, that could be used 
to promote accountable prediction in the short term, disclosure sufficient for 
reproducibility in the medium term, and reduction in system opacity over the 
medium to long term. 

II. OPACITY AND THE FIELD EXPERT  

This Part provides a relatively brisk summary of the now voluminous legal 
and computer science literature on opacity in machine learning. Although we 
do not purport to be exhaustive, we highlight points relevant to the normative 
framework of this Essay. Accordingly, we focus on opacity—both tool opacity 
and system opacity—not from the standpoint of the layperson, or even a 
health professional using software enabled by machine learning, but from the 
standpoint of the field expert. 

A. WHAT IS OPACITY? 

Both tool and system opacity involve many different aspects. The 
literature, which has focused on tool opacity, has generally identified three 
components of tool opacity that are particularly important.30 These are 
complexity, which can render the number of interdependent input factors 
involved too high for ready comprehension, even by experts; non-intuitiveness, 
where the decision rules used by an algorithm, even if observable, do not 
make sense to experts; and secrecy, where details of algorithmic development 
are deliberately concealed.31 

These three concepts can interact with and enhance each other, but are 
distinct;32 the result can range from fully transparent to fully opaque. 
Furthermore, although the literature has focused on these issues with  
respect to machine learning tools, two of the issues—complexity and non-
intuitiveness—will also (and perhaps more fundamentally) represent features 
of the underlying natural or social systems that the tools are used to study. 

 

 30. A substantial literature has focused on the related and much-discussed concept of 
explainability, especially explainability not to field experts but to individuals, and has linked it to 
concepts like due process, antidiscrimination, or consent. For an overview of legal requirements 
and scholarly efforts in that area, see, for example, Andrew D. Selbst & Solon Barocas, The Intuitive 
Appeal of Explainable Machines, 87 FORDHAM L. REV. 1085, 1099–117 (2018). See also generally 
Margot E. Kaminski, The Right to Explanation, Explained, 34 BERKELEY TECH. L.J. 189 (2019) 
(describing the explainability requirement as embedded in the European Union’s General Data 
Protection Regulation (GDPR)). 
 31. For a particularly helpful analysis of these related factors (using, at times, slightly 
different terminology), see Selbst & Barocas, supra note 30, at 1089–99. 
 32. The interactions between these three concepts are, no surprise, complex. In general, 
the three concepts will tend to reinforce each other—complex models are more likely to yield 
non-intuitive results, and the difficulty of reverse-engineering complexity from non-intuitive 
outputs will tend to strengthen secrecy—but these interactions are not absolutes, and will vary 
contextually. Complex secret models can still be explained by reverse engineering, and relatively 
simple models can yield non-intuitive results. A full exploration of these issues is beyond the scope 
of this Essay. 
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1. Complexity 

Both machine learning models and the underlying systems typically 
studied by machine learning are likely to be complex and poorly 
understood.33 As a statistical matter, complexity can arise for many reasons, 
including nonlinearity and discontinuity.34 In the case of machine learning 
models, however, the more important additional feature is that they 
encompass many more input variables than the typical human-designed 
model.35 Similarly, the systems studied are often themselves tremendously 
complex, relying on interrelated networks of features.36 Indeed, that parallel 
complexity generates some of the appeal of using machine learning to probe 
and manipulate systems that are otherwise too complex for traditional 
scientific tools.37 

In some cases, particular machine-learning models can attempt to 
explain underlying systemic complexity, either generally or in a particular 
case.38 However, these explanations, which often use machine learning to 
interpret machine learning, are typically statistical approximations, rather 
than fully accurate representations.39  

2. Non-Intuitiveness 

Non-intuitiveness of systems and tools can also lead to opacity. Here, the 
field expert—either by direct analysis of the model or with the assistance of 
machine learning that helps to explain the model—may be able to hone in 
on particular correlations between inputs and outputs. Nonetheless, the 
correlations might appear inexplicable. For example, suppose that a machine-
learning model accurately predicts responsiveness to a particular drug. The 
machine learning that interprets the underlying models (also based on 
machine learning) “explains” that the prediction was made based in part on 
the individual’s breakfast preferences. Even if such predictions were accurate, 

 

 33. See generally MELANIE MITCHELL, COMPLEXITY: A GUIDED TOUR (2009) (providing a 
general analysis of complexity). 
 34. See id. at 22–27. For present purposes, we do not need to dive into complexity theory, 
nor field-specific definitions.  
 35. See Selbst & Barocas, supra note 30, at 1094–96. 
 36. See, e.g., Gezhi Weng, Upinder S. Bhalla & Ravi Iyengar, Complexity in Biological Signaling 
Systems, 284 SCIENCE 92, 92 (1999); see also Selbst & Barocas, supra note 30, at 1094 (using the 
term “inscrutability” to refer to the “situation in which the rules that govern decision-making are 
so complex, numerous, and interdependent that they defy practical inspection and resist 
comprehension”). 
 37. See, e.g., W. Nicholson Price II, Black-Box Medicine, 28 HARV. J.L. & TECH. 419, 429–31 
(2015) (describing the advantage of using complex algorithmic models because of underlying 
biological complexity). 
 38. See generally David Gunning et al., XAI—Explainable Artificial Intelligence, 4 SCI. ROBOTICS 
1 (2019) (providing an overview of explainable artificial intelligence and arguing that 
explainability is essential for effective AI management).   
 39. Rudin, supra note 10, at 208. 
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they would be non-intuitive; it is hard “to weave a sensible story to account for 
the statistical relationships in the model.”40 

Non-intuitiveness can be a red flag for artifacts. An unknown latent 
variable may explain both the predicted outcome and the predictor used by 
the algorithm (say, individuals with certain socioeconomic status tend both to 
eat a certain type of breakfast and to take medications more consistently). Or 
the correlation may be purely spurious, resulting from the ability of algorithms 
to find any number of non-real relationships in datasets.  

In contrast with intractable complexity, however, non-intuitiveness can 
have a bright side. The bright side emerges if the correlation in question arises 
not as a consequence of some hidden latent variable that provides the actual 
causal impact but, instead, because the model is picking up on some causal 
factor in the underlying system that is not intuitive to the human.41 To put the 
point another way, machine learning could prove quite fruitful in assisting 
human hypothesis generation.42 In the example above, it turns out (really!) 
that grapefruit consumption mediates the effectiveness of certain drugs.43 
Had we not already known that, the machine learning algorithm might have 
sparked further investigation, thereby yielding the (current) understanding 
that the furanocoumarin chemicals in grapefruit juice inhibit a key enzyme 
involved in drug metabolism.  

More generally, machine learning approaches are beginning to achieve 
widespread use throughout biomedical research precisely because of their 
ability to yield non-intuitive hypotheses. For example, field experts have used 
machine learning to develop insights into networks of genetic regulatory 
activity, protein folding, protein–protein interactions, and many other 
fundamental biological conundrums.44 These hypotheses have then been 

 

 40. Selbst & Barocas, supra note 30, at 1097.  
 41. As machine learning progresses, an interesting question for patent law scholars will be 
whether a model’s non-intuitive reasoning renders it “nonobvious,” and therefore potentially 
patentable, at least to the extent models are considered patent-eligible subject matter. Of course, 
to the extent that the “ordinary artisan” that patent law uses as its reference point for determining 
what is nonobvious, an artisan whose skill is enhanced by machine learning, the artisan-machine 
learning hybrid might find very little non-intuitive. For an interesting exploration of these 
possibilities, see generally Ryan Abbott, Everything is Obvious, 66 UCLA L. REV. 2 (2019). 
 42. Alternatively, it could assist in disrupting flawed intuitions. As vast amounts of literature 
in economics, psychology, and neuroscience have now shown, human intuition is, at best, an 
incomplete foundation for empirical investigation. See, e.g., Veronika Denes-Raj & Seymour 
Epstein, Conflict Between Intuitive and Rational Processing: When People Behave Against Their Better 
Judgment, 66 J. PERSONALITY & SOC. PSYCH. 819, 820 (1994). 
 43. See generally David G. Bailey, George Dresser & J. Malcolm O. Arnold, Grapefruit 
–Medication Interactions: Forbidden Fruit or Avoidable Consequences?, 185 CAN. MED. ASS’N J. 309 
(2013) (noting that more than 85 drugs are now known to interact with grapefruit, many with 
“serious adverse effects”); David G. Bailey, J. David Spence, Claudio Munoz & J. Malcom O. 
Arnold, Interaction of Citrus Juices with Felodipine and Nifedipine, 337 LANCET 268 (1991) 
(identifying the interaction of grapefruit—but not orange—juice with the drugs felodipine and 
nifedipine, identified accidentally when grapefruit juice was used to mask the taste of alcohol in 
an earlier study). 
 44. Travers Ching et al., Opportunities and Obstacles for Deep Learning in Biology and Medicine, 
15 J. ROYAL SOC’Y INTERFACE 1, 12–22 (2018) (collecting hundreds of studies). 
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tested experimentally, with the ultimate result being causal identification of 
important drivers of disease states.45   

Machine learning is also being used throughout the drug discovery and 
development process—for instance, to identify and validate novel drug 
candidates. In addition to the work that is being done by large firms, many 
startups (180, according to one recent count)46 are now devoted exclusively 
to the use of machine learning in drug discovery and development.47  

Although this drug discovery work is not necessarily directed towards 
generating novel hypotheses about fundamental questions, some of it is. 
Moreover, applied work can yield first-principles insight. The use of neural 
networks—one form of machine learning—to predict cardiovascular disease 
from retinal scans has yielded a novel indication of strong sex-specific 
differences in the retinal fundus.48 Ziad Obermeyer has used machine 
learning to suggest that standard methods of evaluating knee X-rays miss 
racial differences and biases diagnoses against non-white patients.49 
Obermeyer found that machine learning analysis of X-rays could predict 
patient pain scores substantially better than radiologists, suggesting that 
something is objectively wrong in the knees of non-white patients complaining 
of pain that current radiology has not yet identified. 

Thus, although non-intuitiveness contributes to opacity, further work  
on non-intuitive (to humans) variables identified by machine learning has 
already proven an important mechanism by which machine learning advances 
fundamental understanding.  

3. Secrecy 

A final critical component of opacity is secrecy. Although secrecy directly 
implicates only tool opacity, addressing tool opacity can be quite important 
for purposes of reducing system opacity. Specifically, to the extent that the 
machine learning produces a non-intuitive output, this non-intuitive output 
may be a reflection of a real but non-intuitive (to humans) feature of the real-
world system. Or it could be a misleading correlation. Ultimately, the test of 
truth will come from rigorous testing of the non-intuitive hypothesis. But 
before scientists expend resources on hypothesis testing, they should have the 

 

 45. See Camacho et al., supra note 12, at 1582, 1584 (collecting multiple studies that led to 
identification of causal drivers of disease states as well as characterization of the mechanism of 
action of existing drugs). 
 46. GREG REH, DELOITTE, 2020 GLOBAL LIFE SCIENCES OUTLOOK 22 (2020). 
 47. For a review of machine learning in drug discovery and development, see generally Sean 
Ekins et al., Exploiting Machine Learning for End-to-End Drug Discovery and Development, 18 NATURE 
MATERIALS 435 (2019). 
 48. See Ryan Poplin et al., Prediction of Cardiovascular Risk Factors from Retinal Fundus 
Photographs via Deep Learning, 2 NATURE BIOMEDICAL ENG’G 158, 161 (2018) (noting that “results 
show strong gender differences in the fundus photographs and may help guide basic research 
investigating the anatomical or physiological differences between male and female eyes”). 
 49. Ziad Obermeyer, Machine Learning for Healthcare, Ziad Obermeyer: Algorithms Are as 
Good as Their Labels, YOUTUBE (Aug. 3, 2020), https://www.youtube.com/watch?v=xt_pwq4HZWA 
[https://perma.cc/SR3Q-P6LN] (study description begins at 13:18). 
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disclosure necessary for thorough investigation into, and robust reproducibility 
of, the initial output. 

For its part, a machine-learning developer may, for reasons of 
competitive advantage, want to maintain secrecy over one or more of the 
following aspects of its work product: the learning algorithm’s source code, 
associated parameters, the training data, training process, or the resulting 
model. The competitive advantage conferred by secrecy increases with the 
cost of reverse engineering and/or independent invention. For machine 
learning models, this cost may be quite significant.50 Notably, because it 
relates only to the tool, secrecy is the only of the three opacity components 
that results solely from deliberate choice—that is, the choice of a developer 
to conceal data, methods, results, or some combination.  

In Part III, we discuss the literature’s engagement with machine learning 
secrecy, and add our own contributions. Before turning to that discussion, we 
address briefly the argument that the relevant normative goal for machine 
learning should be validated performance, not clarification of opacity 
(whether system opacity or tool opacity).  

B. SHOULD OPACITY MATTER? 

One potential response to the foregoing concerns is a shrug. Should field 
experts view opacity, as contrasted with validated performance, as particularly 
important?51  

A utilitarian view might suggest that field experts—whether they are 
regulatory experts in the public sector with statutory authorization to oversee 
products enabled by machine learning or field experts in the private sector 
—should worry primarily about reliable performance, not opacity (tool or 
system). Indeed, even in high-risk contexts like medicine, those who have 
criticized the FDA for being too lax in its treatment of machine learning have 
often focused on lenient performance requirements, not opacity.52  

As these commentators rightly note, a significant fraction of the rationale 
for many medical interventions rests (at best) on verified performance, not 
understanding. For example, the mechanisms of action for many small 
molecule drugs and biologics are poorly understood.53 Indeed, in the case of 

 

 50. See Fromer, supra note 20, at 707–08. 
 51. We note that in contexts that raise first-order legitimacy and dignitary concerns, such as 
criminal justice, opacity creates other problems. See, e.g., Kaminski, supra note 18, at 1545–50 
(cataloging dignitary concerns); Ric Simmons, Big Data, Machine Judges, and the Legitimacy of the 
Criminal Justice System, 52 U.C. DAVIS L. REV. 1067, 1084–85 (2018) (calling for transparency in 
criminal justice algorithms); Danielle Keats Citron, Technological Due Process, 85 WASH. U. L. REV. 
1249, 1308–10 (2008) (calling for transparency in algorithmic decisions to satisfy procedural 
due process); Meg Leta Jones, The Right to a Human in the Loop: Political Constructions of Computer 
Automation and Personhood, 47 SOC. STUD. SCI. 216, 231 (2017) (calling for human involvement 
to protect data subjects). 
 52. See, e.g., Parikh et al., supra note 7, at 810.  
 53. This lack of understanding has, at times, “led to spectacular failures in medicine.” Jacob 
S. Sherkow & Christopher Thomas Scott, The Pick-and-Shovel Play: Bioethics for Gene-Editing Vector 
Patents, 97 N.C. L. REV. 1497, 1531 (2019). 
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biologics, particularly complex biologics like monoclonal antibodies (“mAbs,” 
antibodies that bind to a single target), scientists often don’t even know 
precisely what these molecules “are” in terms of structural characterization 
and fully verifiable reproducibility.54 

Although the immediate goal of verified performance is clearly 
important, even a standard utilitarian should, in many cases, favor some 
clarification of system and tool opacity.55 Insight into the inputs that influence 
a model’s decision making can itself be important for ensuring reliable, 
repeated performance, particularly if the model is going to be used on data 
quite different from its original training data.56 In health care, where the 
training data for many machine learning models often comes from relatively 
ethnically homogeneous, wealthy individuals (for example, those who seek 
treatment at facilities like Memorial Sloan Kettering), such transferability to 
different contexts is critical.57  

Pulling the lens back more fully (and as discussed further in Parts III and 
IV), an exclusive focus on performance neglects the powerful role that basic 
scientific understanding plays in promoting social welfare. As economists have 
long noted, such understanding generally produces significant positive 
externalities for society and is an important part of the innovation 
ecosystem.58 In the case of machine learning, an additional significant positive 
externality of basic understanding (albeit one not typically accounted for by 
economists) might be greater trust by the public at large.  

Machine learning also underscores the nonlinearity of scientific progress 
now recognized by most science policy analysts. Contrary to Vannevar  
Bush’s post-World War II vision of science as linear movement from basic 
understanding to applied work that produces social welfare benefits,59 analysts 
now recognize that the flow of knowledge is bidirectional. That is, applied 

 

 54. For an extended discussion of this issue, and its implications for price competition and 
fundamental understanding, see generally W. Nicholson Price II & Arti K. Rai, Manufacturing 
Barriers to Biologics Competition and Innovation, 101 IOWA L. REV. 1023 (2016). 
 55. Greater challenges arise where there is a tradeoff between performance and 
explainability. To look at the extreme example of such a tradeoff, a linear model of two variables 
may have little predictive performance but be quite explainable. Whether, when, and to what 
extent such explanation/performance tradeoffs exist in various areas of machine learning are 
hotly debated questions. The interventions we propose below focus on the secrecy-related aspects 
of opacity rather than the complexity or non-intuitiveness-based aspects to which this tradeoff 
might be more salient.  
 56. See, e.g., Ariel Dora Stern & W. Nicholson Price II, Regulatory Oversight, Causal Inference, 
and Safe and Effective Health Care Machine Learning, 21 BIOSTATISTICS 363, 364–65 (2020) (noting 
the importance of causal understanding for a trans-contextual application of AI). 
 57. See generally W. Nicholson Price II, Medical AI and Contextual Bias, 33 HARV. J.L. & TECH. 
65 (2019) (discussing the importance of transferability in health care AI systems). 
 58. For a recent, highly accessible summary of this literature (coupled with an argument for 
greater public funding of basic science), see generally JONATHAN GRUBER & SIMON JOHNSON, 
JUMP-STARTING AMERICA: HOW BREAKTHROUGH SCIENCE CAN REVIVE ECONOMIC GROWTH AND 
THE AMERICAN DREAM (2019). 
 59. See VANNEVAR BUSH, SCIENCE: THE ENDLESS FRONTIER 19 (Nat’l Sci. Found. 1960) 
(1945) (“Basic research . . . creates the fund from which the practical applications of knowledge 
must be drawn.”).  
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science can yield fundamental understanding. Thus, institutional structures 
that encourage disclosure of applied science, and not just basic science, 
should be encouraged.  

The case for clearing both system and tool opacity becomes even 
stronger, of course, to the extent that one’s perspective is non-utilitarian. For 
example, if the field expert has non-utilitarian duties to promote the 
autonomy of those whom her work will ultimately affect, then she should 
clearly work towards explainability.60 An important goal should be to avoid a 
scenario where people subject to an unexplainable predictive model are 
essentially held captive by unknown variables that they cannot seek to 
change.61 And these non-utilitarian concerns may, of course, be much more 
substantial when machine-learning is applied in areas outside our focus here, 
such as predictive policing, political campaigning, or allocation of social 
resources.62 

On the assumption that system and tool opacity are worth attempting to 
reduce, we posit that the last contributor—secrecy associated with tools—is 
most amenable to policy interventions. Accordingly, Part III analyzes the 
implications of secrecy in machine learning tools.  

To keep the analysis tractable, we focus only on innovation-related harms 
and benefits associated with secrecy. We therefore assume that disclosure can 
be made in a manner that retains appropriate safeguards against harm to any 
individuals from whom the data was derived.63  

III. SECRECY, COMPETITIVE ADVANTAGE, AND DISCLOSURE 

The central obstacle to reducing tool opacity—and to reproducibility by 
competitors—is secrecy with respect to the learning algorithm, training data, 
training process, and associated parameters. Thus, the most straightforward 
approach to clearing opacity derived from secrecy is disclosure of the learning 
algorithm, associated parameters, and training data. Such disclosure could be 
fully public—that is, a general disclosure—or more focused, available to field 
experts only.64  

 

 60. See Selbst & Barocas, supra note 30, at 1118–19 (describing dignitary justifications for 
explainability). 
 61. Id. 
 62. See generally Kaminski, supra note 30 (describing the requirements of the European 
Union’s General Data Protection Regulation (GDPR)); Selbst & Barocas, supra note 30 
(exploring the difference between machine learning and other forms of decision-making). 
 63. See Roger Allan Ford & W. Nicholson Price II, Privacy and Accountability in Black-Box 
Medicine, 23 MICH. TELECOMMS. & TECH. L. REV. 1, 29–39 (2016) (describing ways to protect 
patient privacy while sharing health-related big data). But see Paul M. Schwartz & Daniel J. Solove, 
The PII Problem: Privacy and a New Concept of Personally Identifiable Information, 86 N.Y.U. L. REV. 
1814, 1841–45 (2011) (describing the ability to re-identify de-identified data). 
 64. For example, data from pharmaceutical clinical trials has traditionally been kept secret; 
in the wake of recent efforts to increase disclosure, results are now more frequently available, but 
often only to vetted experts in the field for predetermined legitimate purposes. See, e.g., Policies 
& Procedures to Guide External Investigator Access to Clinical Trial Data, YODA PROJECT, https:// 
yoda.yale.edu/policies-procedures-guide-external-investigator-access-clinical-trial-data [https:// 
perma.cc/49PY-USCM] (stating that proposals for access to clinical trial data from partner 
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This Part considers what disclosure means in the context of machine 
learning. We begin by describing institutional motivations behind secrecy 
—why firms keep information secret, how powerful secrecy is, and what 
competitive advantages it confers. We start with competitive advantage 
because, particularly in the absence of other innovation incentives, this 
competitive advantage can be an important incentive. Next, we consider 
disclosure’s benefits, whether directly to field experts, to downstream users 
and innovators, or to scientific reproducibility and progress more generally. 
Finally, we illustrate concretely how disclosure in machine learning could 
work by looking to the issue in a specific incentive context that has been 
rigorously studied by legal scholars and economists: the patent system. There, 
disclosure is mandated—but is widely agreed to be largely ineffective. 

A. SECRECY AND COMPETITIVE ADVANTAGE 

As intellectual property scholars have long noted,65 secrecy can, 
depending on context, be a relatively weak or strong form of protection. On 
the one hand, trade secrecy66 is a relatively low cost form of protection—it 
attaches so long as the information in question confers competitive advantage 
by virtue of “not being generally known” and “is the subject of [reasonable] 
efforts . . . to maintain . . . secrecy.”67 On the other hand, trade secrecy does 
not protect against independent invention or reverse engineering. Therefore, 
strength of protection can vary considerably depending on the cost of 
independent invention or reverse engineering (or some combination of the 
two) faced by competitors. 

In general, the source code for the learning algorithm (that is, the 
program that does the learning) confers only limited competitive advantage. 
In many cases, the competitor may be able to find open source options 
—underlying the lack of competitive advantage, some prominent commercial 
firms make versions of their learning algorithms freely available.68 Alternatively, 
depending on resources, the competitor may be able to independently invent 
and/or reverse engineer the source code. 

 
pharmaceutical companies will be reviewed for scientific merit and cannot be used for 
commercial or litigation purposes). 
 65. See generally Jerome H. Reichman, How Trade Secrecy Law Generates a Natural Semicommons 
of Innovative Know-How, in THE LAW AND THEORY OF TRADE SECRECY 185 (Rochelle C. Dreyfuss & 
Katherine J. Strandburg eds., 2011) (summarizing the applications of trade secrecy law); Pamela 
Samuelson & Suzanne Scotchmer, The Law and Economics of Reverse Engineering, 111 YALE L.J. 1575 
(2002) (surveying the historical practice of reverse engineering and its application to intellectual 
property secrecy).  
 66. For the moment, we elide the concepts of actual secrecy (that is, keeping information 
from others via locks or other non-legal forms of protection), and trade secrecy (that is, the body 
of law that allows suits for misappropriation of trade secrets). We discuss some of these 
distinctions below. 
 67. UNIF. TRADE SECRETS ACT § 1(4) (NAT’L CONF. OF COMM’RS ON UNIF. STATE L. 1985).  
 68. See MARTÍN ABADI ET AL., TENSORFLOW: A SYSTEM FOR LARGE-SCALE MACHINE LEARNING 
265 (2016), https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf [https:// 
perma.cc/MU6Y-RU6T]; Tools, FACEBOOK AI, https://ai.facebook.com/tools/pytorch [https:// 
perma.cc/Y55U-E65Q]. 
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Figure 1. Data Size and Model Performance  

 
 
 
 
 
 
 
  
 
 
 
 

 
 
More than learning algorithm source code, well-curated and labelled 

training data represents a very significant hurdle. As Figure 1, taken from a 
talk by Andrew Ng shows, the data needs of large neural networks may be 
particularly significant.69 Competition policy commentators have, therefore, 
rightly focused on this latter hurdle as a potentially significant entry barrier.70  

Reverse engineering training data from trained machine learning 
models is sometimes possible but can be quite difficult. To be sure, for 
relatively simple machine learning models available as a service, reverse 
engineering may be possible. In one case where the machine learning model 
revealed confidence values associated with its outputs, researchers’ repeated 
query and response engagement with the model resulted in a few thousand 
query/response pairs. This data was then used as training data for the reverse 
engineer’s own machine learning, and the result was a near-clone that 
performed similarly to the target machine learning.71  

However, commentators are doubtful that similar results will emerge for 
more complex learning models.72 Thus, at least for the moment, collecting, 
curating, and concealing reliable training data for these more complex 
models will continue to serve as a barrier to entry. 

 

 69. Figure 1 shows the increase of model performance with dataset size; large neural 
networks especially benefit from larger datasets. 
 70. See, e.g., Hal Varian, Artificial Intelligence, Economics, and Industrial Organization, in THE 
ECONOMICS OF ARTIFICIAL INTELLIGENCE: AN AGENDA 399, 402–04 (Ajay Agrawal, Joshua Gans & 
Avi Goldfarb eds., 2019); Judith Chevalier, Comment on Artificial Intelligence, Economics, and 
Industrial Organization, in THE ECONOMICS OF ARTIFICIAL INTELLIGENCE, supra, at 419–21. 
 71. FLORIAN TRAMÈR, FAN ZHANG, ARI JUELS, MICHAEL K. REITER & THOMAS RISTENPART, 
STEALING MACHINE LEARNING MODELS VIA PREDICTION APIS 601 (2016), https:// 
www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_tramer.pdf [https:// 
perma.cc/GCB9-6J7Z]. 
 72. See Andy Greenberg, How to Steal an AI, WIRED (Sept. 30, 2016, 11:06 AM), https:// 
www.wired.com/2016/09/how-to-steal-an-ai [https://perma.cc/UH47-Z3RP]. 
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Beyond issues of market entry, competition, and price is the issue of 
disclosure outside the developer firms themselves. Even if firms are 
competing vigorously over data, and perhaps even innovating incrementally 
based on this data—and thus there is no problem from a short-term 
competition policy perspective—the pace of disclosure outside those firms 
may be quite slow. Below we discuss the benefits of disclosure, particularly to 
field experts. Some of these benefits are benefits of open science generally. 
But robust disclosure may be particularly useful for machine learning. 
Ordinary processes of reverse engineering may be less likely to generate 
competition and public domain training data at scale. Most importantly, 
robust disclosure (and interrogation of that disclosure) provides a relatively 
low-cost mechanism for an initial vetting of machine learning’s interesting, 
but non-intuitive, outputs. 

B. BENEFITS OF DISCLOSURE 

Disclosure brings many benefits.73 And while these are described as 
benefits from disclosure, they could as easily be described in reverse as the 
harms of secrecy, as the presence of secrecy tends to limit the availability of 
these benefits.74 Although we focus on the benefits of disclosure, we are of 
course mindful of harms as well. First, to the extent other protections are not 
available, secrecy may provide an important investment incentive.75 Second, 
disclosure of low-quality information can lead others down problematic 
paths76 and disclosure of accurate information can lead others to follow the 

 

 73. We focus here on the potential benefits that arise from disclosure to field experts, rather 
than to the public generally, to lay actors, or to regulators. That said, the benefits of direct 
disclosure to non-field-experts may also be substantial. See, e.g., Price, supra note 28, at 462–65 
(extolling the benefits of disclosure of medical algorithm development information to 
regulators); Kaminski, supra note 18, at 1578–80 (describing the benefits of algorithmic 
disclosure to lay users); cf. Sherkow & Scott, supra note 53, at 1544–47 (describing the benefits 
to users of patent disclosures about gene editing vector technology); id. at 1538–40 (noting that 
secrecy for vectors may decrease the ability of patients to give truly informed consent to their use). 
 74. Secrecy has other potential harms as well. Physical efforts at secrecy, such as building 
fences and security systems, can incur suboptimal social costs. See, e.g., Mark A. Lemley, The 
Surprising Virtues of Treating Trade Secrets as IP Rights, 61 STAN. L. REV. 311, 334–36 (2008) (arguing 
that one benefit of trade secrecy is reducing the need for investment in actual secrecy). Other 
efforts at secrecy, such as nondisclosure agreements, have been suggested to limit knowledge 
flows, worker movement, innovation, and economic productivity more generally. See generally 
ORLY LOBEL, TALENT WANTS TO BE FREE: WHY WE SHOULD LEARN TO LOVE LEAKS, RAIDS, AND 
FREE RIDING (2013) (collecting evidence on the harms of secrecy and trade secrecy). These 
harms, however, are not our focus here. 
 75. See Price, Big Data, Patents, & Medicine, supra note 17, at 1432–33. 
 76. There are myriad examples of disclosure of incorrect information leading to substantial 
problems down the road. Especially salient today is a 1980 letter to the New England Journal of 
Medicine—this five-sentence letter concluding (erroneously, and with little data) that opioid 
treatment for chronic pain carried a low risk of addiction was cited hundreds of times and likely 
contributed substantially to the opioid epidemic and the lack of physician and scientist belief that 
opioid addiction was an important risk and worth studying. See Pamela T.M. Leung, Erin M. 
Macdonald, Matthew B. Stanbrook, Irfan A. Dhalla & David N. Juurlink, A 1980 Letter on the Risk 
of Opioid Addiction, 376 NEW ENG. J. MED. 2194, 2194–95 (2017) (criticizing Jane Porter & 
Hershel Jick, Addiction Rare in Patients Treated with Narcotics, 302 NEW ENG. J. MED. 123 (1980)). 
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same path rather than branching out to new areas.77 Third, disclosure can 
also lull policymakers into a false sense of security under the assumption that 
transparency substitutes for regulation, even when it should not.78 Fourth, 
certain types of data, particularly health data, may contain information that 
could be traced to a particular individual and be used to harm the individual 
in question.79 Finally, accurate disclosure could enable sophisticated actors to 
game the system.80 Particularly because we focus on scientific research contexts 
where gaming should not be a first-order concern, we view these harms as 
relatively minor compared to the benefits: benefits to field experts in terms of 
understanding, downstream benefits that accrue to others in the system as a 
result of that understanding, and benefits to science as a whole in terms of 
promoting the norm of reproducibility. Nevertheless, we return to disclosure 
harms in Part IV where we discuss policy options. 

1. Direct Benefits from Disclosure to Field Experts 

In the context of machine learning, a key benefit of disclosure to field 
experts is to enable further work on penetrating system opacity. As described 
above, the non-intuitiveness that characterizes many machine-learning 
models has the silver lining of generating hypotheses which, by their very non-
intuitiveness, can open new avenues of scientific exploration.  

In the simplified drugs/breakfast/grapefruit example above, imagine 
that the algorithm simply recommended a dosage to an individual based on 
an “explanatory” statement that their breakfast preferences were correlated 
with drug reaction. A bare statement along those lines would make it difficult 
to learn more, including whether (for example) the algorithm was picking up 
a real effect or some correlation between eating particular foods and 
adherence to drug prescriptions. But if the developer disclosed the data on 
which the algorithm was trained, and how it was trained, field experts might 
be able to factor out the possibility of such confounds. They might recognize 
a potential biochemical relationship between particular foods and dosage 
response/dosage relationship and then test that hypothesis more rigorously. 
Eventually, experts would presumably identify the true, biochemical 
relationship between grapefruit consumption and drug efficacy, increasing 

 

 77. See THOMAS S. KUHN, THE STRUCTURE OF SCIENTIFIC REVOLUTIONS 23–34 (2d ed. 1970); 
cf. Joseph P. Fishman, Creating Around Copyright, 128 HARV. L. REV. 1333, 1339 (2015) (arguing 
that inaccessible areas of inquiry—in his case, because of intellectual property, in ours, secrecy 
—can promote innovation around those areas). 
 78. See generally OMRI BEN-SHAHAR & CARL E. SCHNEIDER, MORE THAN YOU WANTED TO 
KNOW: THE FAILURE OF MANDATED DISCLOSURE (2014) (describing in detail how disclosure fails 
to perform the oversight and regulatory functions for which it is prescribed). 
 79. See generally W. Nicholson Price II & I. Glenn Cohen, Privacy in the Age of Medical Big Data, 
25 NATURE MED. 37 (2019) (outlining the challenges and potential solutions surrounding 
patient privacy and big data). 
 80. See, e.g., Bambauer & Zarsky, supra note 25, at 44 (describing gaming and 
countergaming in the context of dynamic algorithmic systems); Arti K. Rai, Machine Learning at 
the Patent Office: Lessons for Patents and Administrative Law, 104 IOWA L. REV. 2617, 2639–40 (2019) 
(discussing applicant gaming of administrative agency algorithms). 
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our knowledge in the area. Without disclosure, the development of a properly 
vetted hypothesis would be much less likely.  

Disclosure of information about model training, development, and 
validation can also allow field experts to probe the behavior of the models 
themselves; if those models are in use in real-world situations, such probing 
can serve as a parallel form of oversight to that practiced by regulators.81 

Field experts involved in such endeavors can come in different flavors. 
Some may be academics and nonprofit entities engaged mainly in knowledge-
development enterprises. For those experts, the availability of disclosure from 
algorithms which have already been developed and perhaps deployed may be 
an essential source of data for follow-on efforts. Similarly, field experts that 
are themselves developers, but with lesser resources, may find disclosure a key 
part of their own development efforts, lowering barriers to entry into the field 
and expanding the scope of potential developers. This broadening of entrants 
increases the potential for the development of different models—with the 
potential both for greater practical performance,82 but also for clearing system 
opacity. A diversity of approach limits the likelihood that any one paradigm 
becomes fully entrenched, increasing the chance of knowledge development.83 

Field experts could also come from other, larger entities with the capacity 
to develop their own algorithms. For experts in large entities, equipped with 
substantial resources, disclosure from other developers can still create 
substantial benefits. Most straightforwardly, more data increases the size of 
potential training and validation sets. As described below, larger datasets can 
improve performance.84  

Potentially more important, to the extent that the collectors of large 
datasets do so from different populations and with different collection 
strategies, different datasets are likely to incorporate different limitations and 
different biases.85 When such datasets are combined as a result of disclosure, 

 

 81. See, e.g., Price, supra note 28, at 465–73 (suggesting collaborative governance oversight 
via FDA-mediated disclosure of information about medical algorithms).  
 82. See Camacho et al., supra note 12, at 1584 (arguing that one machine learning “rule[] 
of thumb” in network biology is that combinations of different models produce the most robust 
results). 
 83. See KUHN, supra note 77, at 43–51 (describing entrenched paradigms); Laura G. 
Pedraza-Fariña & Ryan Whalen, A Network Theory of Patentability, 87 U. CHI. L. REV. 63, 98–100 
(2020) (describing recombination from diverse fields as the path to groundbreaking 
innovation). This outcome is not definitive; one could also imagine that disclosure increases the 
odds that later developers follow similar paths as those trod earlier, decreasing the eventual 
overall variety of approaches. See supra notes 76–77 and accompanying text. Given the resource 
constraints imposed by big data requirements for machine learning, we think this outcome less 
likely, but the point is contestable. 
 84. See infra Section IV.A (describing performance benefits from scale). 
 85. See, e.g., Ruha Benjamin, Assessing Risk, Automating Racism, 366 SCIENCE 421, 421–22 
(2019) (describing bias in health data and algorithms); Effy Vayena, Alessandro Blasimme & I. 
Glenn Cohen, Machine Learning in Medicine: Addressing Ethical Challenges, 15 PLOS MED. 1, 1–4 
(2018) (describing bias, among other challenges); Price, supra note 57, at 66 (describing the 
potential for population-based bias in medical big data and artificial intelligence); Han Liu & 
Mihaela Cocea, Granular Computing-Based Approach for Classification Towards Reduction of Bias in 
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these differences in representativeness may at least partially counter one 
another, leading to improved performance. In terms of understanding, the 
tensions and discrepancies between models trained in different fashions and 
on different datasets—but with similar goals—can also point to fruitful 
avenues for future exploratory work. 

2. Downstream Benefits of Disclosure to Field Experts 

Though we focus on disclosure to field experts, those experts are not the 
only ones benefited by such disclosure. Greater understanding that arises 
from disclosure to field experts—whether of the machine learning systems 
themselves or of the complex real-world systems that provide the underlying 
data—can help other downstream users. For example, system regulators 
stocked with a greater understanding can better manage the tools that rely on 
those systems—FDA can evaluate medical algorithms, the Securities and 
Exchange Commission can monitor trading and markets, and the National 
Highway Traffic Safety Administration can oversee self-driving vehicles, and 
all can do so better if they can understand what is going on.  

Similarly, system users may be more willing to trust algorithms if they (or 
others they trust) can understand more about how the systems work, or at 
least know that such understanding is possible. For medical algorithms, 
patients might be more willing to follow algorithmic recommendations if  
at least some facets of those algorithms are disclosed and potentially 
understood—and, eventually, if we come to learn more about the underlying 
biological systems on which their recommendations are based.86 

More broadly, as the public is asked to put its trust in algorithmic 
decision-making in an increasing variety of spheres, disclosure to field experts 
may help increase that trust. In part, this would result from the ability of  
field experts to interrogate the procedural methods by with algorithms are 
developed, validated, and deployed. The literature on algorithmic accountability 
has emphasized these issues.87  

But disclosure to field experts also keeps open the possibility that system 
opacity, and perhaps even tool opacity, doesn’t have to be permanent. In the 
future, complexity and non-intuitiveness may be better understood and thus 
become more transparent—that is, decreasing secrecy may eventually 

 
Ensemble Learning, 2 GRANULAR COMPUTING 131, 131 (2017) (discussing potential computational 
approaches to reducing bias). 
 86. This claim is speculative. It is also possible that patients—or doctors—don’t much care 
if anyone understands how medical algorithms work, as long as they do work. One of us has 
assumed this to be the case. See, e.g., W. Nicholson Price II, Big Data and Black-Box Medical 
Algorithms, 10 SCI. TRANSLATIONAL MED. 1, 2–3 (2018). But, he may very well have been wrong; 
the field awaits empirical evidence to clarify the point. 
 87. See, e.g., Kaminski, supra note 18, at 1564–77; Maayan Perel & Niva Elkin-Koren, 
Accountability in Algorithmic Copyright Enforcement, 19 STAN. TECH. L. REV. 473, 526–27 (2016); 
Sonia K. Katyal, Private Accountability in the Age of Artificial Intelligence, 66 UCLA L. REV. 54, 61 
(2019); Alicia Solow-Niederman, Administering Artificial Intelligence, 93 S. CAL. L. REV. 633, 684 
–88 (2020) (lamenting the lack of sufficient private partners for a collaborative governance 
approach). 
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decrease other aspects of opacity, leading to greater interrogability and 
accountability. 

3. Promotion of Reproducibility 

Finally, disclosure promotes scientific reproducibility. Core scientific 
norms view such disclosure and reproducibility as essential for producing 
verified knowledge.88 For physical experiments, reproducibility requires that 
an independent researcher could obtain the same results using the disclosed 
information about an experiment’s conditions, parameters, and equipment 
—and know that the same results were obtained.89 Computational 
reproducibility requires that the same results be obtained from the data and 
code (ideally executable code) used in the original study.90 

C. DISCLOSURE IN THEORY AND PRACTICE; THE EXAMPLE OF PATENT LAW 

Machine learning is hardly the first technological tool to raise difficult 
issues regarding secrecy and disclosure that are important for law. To the 
contrary, the patent system has long grappled with questions of complexity, 
secrecy, and disclosure.91 Patent law seeks to advance the “[p]rogress of 
[s]cience and useful [a]rts,”92 at least in part through a bargain that involves 
disclosure enabling others of “ordinary skill” in the field both to practice the 
disclosed invention and to build on its underlying advance. In patent law, the 
level of detail demanded is a function of how well-understood the field is. For 
systems and tools that are opaque from the standpoint of complexity and non-
intuitiveness, disclosure requirements are supposed to be high.  

Unfortunately, as we also discuss below, the theory of reproducibility 
through disclosure is not as easily achieved in practice. 

 

 88. See generally Bruce Alberts et al., Self-Correction in Science at Work, 348 SCIENCE 1420 
(2015) (providing an argument, authored by the former President of the National Academy of 
Sciences and colleagues, that the norm of reproducibility is necessary for implementing self-
correction). 
 89. If an independent researcher can know that she obtained the same results as the original 
researcher, the research also has verifiability. A particular challenge arises when tacit 
knowledge—often know-how—is also needed for reproducibility. See generally Laura G. Pedraza-
Fariña, Spill Your (Trade) Secrets: Knowledge Networks as Innovation Drivers, 92 NOTRE DAME L. REV. 
1561 (2017) (describing the importance of know-how to innovation and the emergence of 
informal networks sharing such know-how).  
 90. Roger D. Peng, Reproducible Research in Computational Science, 334 SCIENCE 1226, 1226 
–27 (2011). One step beyond reproducibility is replicability—the true gold standard. 
Replicability requires not only independent research but use of independent inputs. In physical 
experiments, reproduction will often take place on different physical equipment in any event so 
the difference between reproducibility and replicability may not be large. In computational 
science, by contrast, generating independent input code and data may not be the norm. 
  In the case of machine learning that relies on an element of randomness (e.g., a random 
seed), perfect reproducibility may be difficult to achieve. But the greater the disclosure, the 
greater the likelihood of reproduction.  
 91. As for non-intuitiveness, the patentability requirement of nonobviousness could be seen 
as quite similar. 
 92. U.S. CONST. art. I, § 8, cl. 8. 
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1. Theory 

In recognition of the scientific value of reproducibility, the patent statute 
requires its own version: it requires the applicant to disclose sufficient 
information to show the artisan in the scientific or technological field how “to 
make and use the” invention.93 Moreover, patent doctrine specifically provides 
for those cases where the end product invention is opaque and can only be 
reproduced by a very precise description of the process by which it is made. 
In those cases, the patent applicant is supposed to apply for a product-by-
process patent, which defines and thus claims the covered invention not by 
describing the actual product, but rather the process used to create it.94 
Indeed, in that subset of product-by-process cases where materials used in the 
process are not readily reproducible, the applicant is supposed to deposit 
those materials in an appropriate, publicly accessible repository.95 In the case 
of biological materials, this requirement also applies more generally: “Where 
the invention involves a biological material and words alone cannot 
sufficiently describe how to make and use the invention in a reproducible 
manner, access to the biological material may be necessary for the satisfaction 
of the statutory requirements for patentability under 35 U.S.C. 112.”96 

2. Practice 

Regrettably, patent law does not live up to its idealized articulation, in 
part because the underlying science doesn’t always either. NIH Director 
Francis Collins has famously opined “that the complex system for ensuring 
the reproducibility of biomedical research is failing and is in need of 
restructuring.”97 Collins notes that in their publications scientists often either 
do not report basic elements of experimental design “or describe them only 
vaguely [in order] to retain a competitive edge.”98  

Perhaps even more problematic is irreproducibility in studies that rely 
heavily on statistical analysis. Here, irreproducibility is linked to pervasive 
problems of poor statistical design such as small sample sizes, small effect sizes, 
and suppression of data that does not support the researcher’s preferred 
result; these underlying problems are exacerbated when details of statistical 

 

 93. 35 U.S.C. § 112 (2018). 
 94. See generally Dmitry Karshtedt, Note, Limits on Hard-to-Reproduce Inventions: Process Elements 
and Biotechnology’s Compliance with the Enablement Requirement, 3 HASTINGS SCI. & TECH. L.J. 109 
(2011) (explaining the overarching law concerning product-by-process claims). 
 95. See, e.g., Price, Big Data, Patents, & Medicine, supra note 17, at 1428–31 (suggesting 
algorithmic deposition as a way to satisfy the § 112 enablement and written description 
requirements). 
 96. MPEP § 2402 (9th ed. Rev. 10, June 2020). 
 97. Francis S. Collins & Lawrence A. Tabak, NIH Plans to Enhance Reproducibility, 505 NATURE 
612, 612 (2014). 
 98. Id.  
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analyses are not shared.99 Both problems—poor design and inadequate 
reporting—appear in patent practice.100 

The problems go beyond statistics and reporting. In 2015, Iain 
Cockburn, Tim Simcoe, and Leonard Freedman estimated that U.S. 
researchers spent about $28 billion per year on irreproducible preclinical 
studies.101 As they note, a significant percentage of the problem in preclinical 
studies can be traced to the unpredictable behavior of antibodies and cell 
lines.102  

These opaque biological products also create problems for 
reproducibility and disclosure in patent law practice. For instance, in order 
for a complex biologic protein such as a monoclonal antibody to be verifiably 
reproduced, the cell line and culture conditions in which it was originally 
produced typically need to be precisely known.103 Varying those conditions 
too much can foil attempts to reproduce the biologic, because cell lines and 
culture conditions interact with the protein’s DNA sequence in complex ways 
that biologists have not fully characterized.104 For purposes of meeting the 
disclosure and reproducibility requirements of patent law, complex biologics, 
therefore, should probably be claimed in product-by-process form.105 
However, the Patent Office has not generally enforced this requirement.106  

On the positive side, problems with patent practice in biologics yield 
lessons for machine learning models. Like biological proteins, machine 
learning models are highly dependent on the specific process and input 
materials (learning algorithm plus training data) by which they are 
produced.107 Thus, at least in theory, the Patent Office has the authority to 
require learning algorithm, training data, and training process disclosure for 
patents on machine learning models. (In contrast, for standard rules-based 
software, at least software that models well-understood systems, disclosure of 
a basic algorithm should suffice108).  

 

 99. See generally John P.A. Ioannidis, Why Most Published Research Findings Are False, 2 PLOS 
MED. 696 (2005) (discussing the issues with published research findings). 
 100. See generally Janet Freilich, The Replicability Crisis in Patent Law, 95 IND. L.J. 431 (2020) 
(finding that many experiments disclosed in patents lack key indicia of reproducibility); Jacob S. 
Sherkow, Patent Law’s Reproducibility Paradox, 66 DUKE L.J. 845 (2017) (describing the failure of 
many patented inventions, especially pharmaceuticals, to actually work in practice). 
 101. Leonard P. Freedman, Iain M. Cockburn & Timothy S. Simcoe, The Economics of 
Reproducibility in Preclinical Research, PLOS BIOLOGY, June 9, 2015, at 1, 3. 
 102. Id. at 5–6.   
 103. Price & Rai, supra note 54, at 1035–36. 
 104. Id. at 1034–36. 
 105. Karshtedt, supra note 94, at 139.  
 106. See Price & Rai, supra note 54, at 1051. 
 107. Subbaswamy & Saria, supra note 5, at 345–46. If one were inclined to take the parallel 
between biologics and machine learning to its logical extreme, the DNA sequence that codes for 
the biologic would be analogous to the learning algorithm’s source code. The cell line would be 
analogous to training data.  
 108. See Mark A. Lemley, Software Patents and the Return of Functional Claiming, 2013 WIS. L. 
REV. 905, 926 (discussing the requirements of patent claim language). 
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In principle, then, the advent of machine learning could provide the 
Patent Office an opportunity to revisit product-by-process claiming and 
require such claiming for both complex biologics and complex machine 
learning models. In that regard, the Patent Office’s recent request for 
information on artificial intelligence patenting, which includes questions 
about whether such patenting poses unique disclosure issues, is a promising 
sign.109  

We turn to this possibility in Part IV, along with other innovation policy 
levers that could potentially produce disclosure, and ultimately first-principles 
scientific knowledge, at a somewhat faster pace. 

IV. DISCLOSURE AND UNDERSTANDING: INNOVATION POLICY LEVERS  

Although secrecy is the aspect of opacity most amenable to policy 
interventions, the interventions we discuss below don’t necessarily take as 
their primary aim the goal of reducing secrecy. Indeed, simply requiring 
unilateral disclosure by firms entails complex substantive and political-
economy challenges,110 suggesting that a broader range of possibilities should 
be considered. Equally important, the vigorous policy conversation around 
data governance has already suggested, or even put into place, a variety of 
different policy levers for achieving substantively important goals other than 
secrecy reduction. These policy levers could do double duty by working not 
only to achieve their primary goal but also to reduce secrecy. 

 Accelerated disclosure of data and methodology underlying machine-
learning algorithms could emerge from a number of different institutional 
settings. These include publicly funded “big data” projects (e.g., the Human 
Genome Project, the Cancer Genome Atlas, or All of Us), decentralized data 
generation in publicly funded academic institutions, patent filings, FDA 
regulatory processes, or demand side private sector actors like insurers that 
have custody of large amounts of electronic health records (“EHR”) data. The 
freshest, and potentially most promising, context for disclosure may be the 
regulatory approach of “pre-certification” currently being considered by the 
FDA. Part IV presents each of these possibilities independently, though the 
optimal policy strategy is likely a combination of different approaches. 

A. PUBLIC FUNDING FOR LARGE SCALE DATA GENERATION 

One possibility to increase disclosure—at least of the data enabling 
machine learning—is public funding for the generation of large-scale data 
that can then be used by many actors for both basic and applied tasks. For 
instance, the NIH’s All of Us cohort study, created as part of the Precision 
Medicine Initiative, aims to generate and capture large amounts of data, 
including genome sequences, on at least one million Americans from varying 

 

 109. Request for Comments on Patenting Artificial Intelligence Inventions, 84 Fed. Reg. 
44,889 (Aug. 27, 2019). 
 110. See Price & Rai, supra note 54, at 1054–55 (describing industry resistance to mandated 
disclosure). 
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racial and ethnic categories as well as socioeconomic backgrounds.111 The 
project envisions creating a high-quality dataset that is broadly available.112  

Although not all of this data will necessarily have been curated and 
labeled in a manner necessary to represent machine-learning-ready training 
data for a given research project, some will be. Additional curation and 
labeling will produce additional training data. Machine-learning algorithms 
trained on such data could point to (possibly non-intuitive) scientific 
hypotheses, and the public nature of the dataset would allow various actors to 
explore those hypotheses.  

Some public data-generation efforts have explicit safeguards to drive 
public disclosure. The Human Genome Project, for example, included 
guidance that researchers involved not seek patents on the genes they 
sequenced,113 and that sequence data be immediately disclosed.114 Heidi 
Williams has found that publicly disclosed data generated by the Human 
Genome Project generated more downstream scientific and commercial 
output than parallel genomic sequence data produced by Celera Genomics 
—which was protected by trade secrecy and by contractual nondisclosure 
language.115 

B. IMPROVING DISCLOSURE IN THE PATENT SYSTEM 

As a threshold matter, patent lawyers may object to the patent lever on 
the grounds that recent, vaguely worded Supreme Court decisions that may 
make software harder to patent116 will spur developers of machine learning 

 

 111. See About, NIH: ALL OF US RSCH. PROGRAM, https://allofus.nih.gov/about [https:// 
perma.cc/X84E-3XJB]. 
 112. Opportunities for Researchers, NIH: ALL OF US RSCH. PROGRAM, https://allofus.nih.gov/ 
get-involved/opportunities-researchers [https://perma.cc/7DPD-4N5R]. 
 113. Jorge L. Contreras, Leviathan in the Commons: Biomedical Data and the State, in GOVERNING 
MEDICAL KNOWLEDGE COMMONS 19, 28 (Katherine J. Strandburg, Brett M. Frischmann & Michael 
J. Madison eds., 2017). Note that under the Supreme Court’s decision in Ass’n for Molecular 
Pathology v. Myriad Genetics, Inc., isolated genes are no longer patentable subject matter. Ass’n for 
Molecular Pathology v. Myriad Genetics, Inc., 569 U.S. 576, 596 (2013). 
 114. Jorge L. Contreras, Bermuda’s Legacy: Policy, Patents, and the Design of the Genome Commons, 
12 MINN. J.L. SCI. & TECH. 61, 85 (2011). 
 115. Heidi L. Williams, Intellectual Property Rights and Innovation: Evidence from the Human 
Genome, 121 J. POL. ECON. 1, 14 (2013). Williams and her co-author Bhaven Sampat elsewhere 
note that some forms of IP can be important for future work, finding that patented genes appear, 
ex ante, to be more valuable than unpatented genes. Bhaven Sampat & Heidi L. Williams, How 
Do Patents Affect Follow-On Innovation? Evidence from the Human Genome, 109 AM. ECON. REV. 203, 
214–15 (2019). 
 116. See generally Alice Corp. v. CLS Bank Int’l, 134 S. Ct. 2347 (2014) (expanding the scope 
of the “abstract idea” exception to patentable subject matter); Myriad Genetics, Inc., 569 U.S. 576 
(expanding the scope of the “products of nature” exception to patentable subject matter); Mayo 
Collaborative Servs. v. Prometheus Lab’ys, Inc., 566 U.S. 66 (2012) (expanding the scope of the 
“law of nature” exception to patentable subject matter). Indeed, because the Supreme Court 
decisions take aim at both the natural sciences and software, machine learning in health care may 
be particularly vulnerable. See Price, Big Data, Patents, & Medicine, supra note 17, at 1420–26 
(arguing that patent protection for artificial intelligence in medicine is weak under § 101). 
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models to avoid the system.117 Indeed, some recently published law firm data 
indicate that grant rates for patents on the use of machine learning in certain 
areas, including health care, appear relatively low.118 Thus far, however, this 
law firm data also show that machine learning patent applications in many 
areas, including health care, continue to rise.119 

To the extent developers of machine-learning models and tools continue 
to pursue patents, the patent system can help promote meaningful disclosure. 
A simple mechanism for improving disclosure could be a Patent Office rule 
mandating product-by-process disclosure, at least for certain categories of 
complex machine learning.120 Thus, developers seeking to patent machine 
learning products could be required not only to give detailed information 
about the training process but also to deposit training data and the trained 
machine learning models into a depository which would make the 
information publicly available. Although the Patent Office does not have 
rulemaking authority over the core requirements of patentability,121 patent 
law already provides for this type of disclosure.122 Such a mandate should, at 
least in principle, be an option for the Patent Office.  

To be sure, the political economy of the Office implementing such a 
requirement would be tricky. But the substantive case for disclosure is much 
stronger for machine learning algorithms than for standard software, for the 
 

 117. Kate Gaudry & Samuel Hayim, Artificial Intelligence Technologies Facing Heavy Scrutiny at 
the USPTO, IPWATCHDOG (Nov. 28, 2018), https://www.ipwatchdog.com/2018/11/28/artificial-
intelligence-technologies-facing-heavy-scrutiny-uspto/id=103762 [https://perma.cc/D4BJ-
45TN] (discussing the impact of the Supreme Court’s Alice decision). 
 118. KILPATRICK TOWNSEND & GREYB SERVS., INDUSTRY-FOCUSED PATENTING TRENDS 17 
(2019), https://apps.kilpatricktownsend.com/files/Patent%20Trends%20Study.pdf [https:// 
perma.cc/48MG-EU5M] (finding in 2013, grant rates for artificial intelligence-related 
applications in health care and financial technology were around 60 percent and slightly less in 
digital marketing and education); see also Mateo Aboy, Cristina Crespo, Kathleen Liddell, Timo 
Minssen & Johnathon Liddicoat, Mayo’s Impact on Patent Applications Related to Biotechnology, 
Diagnostics and Personalized Medicine, 37 NATURE BIOTECHNOLOGY 513, 515 (2019) (“[While] Mayo 
has had a substantial impact on patent prosecution in the life sciences . . . our results also show 
that the impact of Mayo may not be as devastating for biotech, diagnostics and personalized 
medicine patent applications as many commentators have stated.”). 
 119. KILPATRICK TOWNSEND & GREYB SERVS., supra note 118, at 28. Continued patent 
application in the face of persistent rejection by the Patent Office is a puzzle that Colleen Chien 
and one of the authors are currently exploring. 
 120. It is worth noting that the scope of resulting patents, like the scope of product-by-process 
patents more generally, would likely be relatively narrow. W. Nicholson Price II, Describing Black-
Box Medicine, 21 B.U. J. SCI. & TECH. L. 347, 355 (2015). 
 121. E.g., Jonathan S. Masur, Regulating Patents, 2010 SUP. CT. REV. 275, 276 ( “[T]he Patent 
and Trademark Office (PTO) has never had substantive rule-making authority.”); Arti K. Rai, 
Growing Pains in the Administrative State: The Patent Office’s Troubled Quest for Managerial Control, 157 
U. PA. L. REV. 2051, 2053 (2009) (“[T]he PTO lack[s] substantive rulemaking authority . . . .”); 
Arti K. Rai, Patent Validity Across the Executive Branch: Ex Ante Foundations for Policy Development, 61 
DUKE L.J. 1237, 1270 (2012) (“[T]he PTO . . . does not have rulemaking authority over questions 
of patent validity . . . .”). 
 122. Enzo Biochem, Inc. v. Gen-Probe Inc., 323 F.3d 956, 965 (Fed. Cir. 2002) (holding that 
a written reference to publicly deposited biological material can satisfy the written description 
requirement of 35 U.S.C. § 112); USPTO Rules of Practice in Patent Cases, 37 C.F.R. § 1.802 
(2019) (implementing the depository requirement). 
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reasons described above. Moreover, even in the latter case, sustained pressure 
on the Office and the courts by politically powerful large information 
technology firms impeded by “bad patents” did lead to legal requirements 
that software patents disclose a basic algorithm.123 

One substantive challenge with a product-by-process requirement would 
be that U.S. law allows patents to be filed early in the research and development 
process.124 And, as a practical matter, patents are indeed filed quite early.125 
This institutional structure is not optimal for machine learning models, which 
are often engineered for improvement based on learning from new data. The 
optimal disclosure regime might therefore be quite different from the current 
static regime and involve continual updating of disclosure during the life of 
the patent.126  

Indeed, in the context of other inventions that continually improve, 
scholars have suggested changing the patent statute to require disclosure 
updates. Jeanne Fromer has proposed that patentees be required to disclose 
all commercial embodiments of a particular patented invention, which 
among other goals would “reveal[] helpful technological information.”127 
One of us has argued that patent law should incorporate an “economic 
enablement” requirement.128 Patentees would be required to disclose enough 
information—likely after initial patenting—to enable competitors to market 
competing products once the patent term has expired.129 Disclosed 

 

 123. Kevin Emerson Collins, Patent Law’s Functionality Malfunction and the Problem of Overbroad, 
Functional Software Patents, 90 WASH. U. L. REV. 1399, 1451–60 (2013); see Supplementary 
Examination Guidelines for Determining Compliance with 35 U.S.C. 112 and for Treatment of 
Related Issues in Patent Applications, 76 Fed. Reg. 7162, 7162–7172 (Feb. 9, 2011). 
 124. In this respect, U.S. patent law, whether by accident or design, adopts a “prospect” 
theory of patents. On this view, broad patents are similar to ordinary property rights and should 
be granted early because they can then serve as a focal point for efficient development and 
commercialization of the inventive “prospect.” Edmund W. Kitch, The Nature and Function of the 
Patent System, 20 J.L. & ECON. 265, 276 (1977); F. Scott Kieff, The Case for Registering Patents and 
the Law and Economics of Present Patent-Obtaining Rules, 45 B.C. L. REV. 55, 66 (2003) (explaining 
that, while “the prospect and rent dissipation theories provide important insights about how the 
patent system can both increase and decrease rent dissipation-type social costs,” they fall short in 
other areas). Not surprisingly, the literature arguing for and against this approach is voluminous. 
John F. Duffy, Rethinking the Prospect Theory of Patents, 71 U. CHI. L. REV. 439, 441–42 (2004) 
(listing scholars who praise and scholars who criticize prospect theory).  
 125. See Christopher A. Cotropia, The Folly of Early Filing in Patent Law, 61 HASTINGS L.J. 65, 
71 (2009) (describing early filing practice and exploring the problems associated with it, including 
“too many applications, too many patents, underdevelopment of patented technology, and 
increased assertion of patent rights”); Mark A. Lemley, Ready for Patenting, 96 B.U. L. REV. 1171, 
1195 (2016) (noting that laws encouraging early patent filing “encourag[e] ideas at the expense 
of those who take the time to develop and test their inventions”). 
 126. Cf. Price & Rai, supra note 54, at 1043 (arguing for continuing disclosure in the context 
of opaque biologic manufacturing processes). 
 127. Jeanne C. Fromer, Dynamic Patent Disclosure, 69 VAND. L. REV. 1715, 1716 (2016). As 
noted earlier, see generally Fromer, supra note 20, Fromer has also suggested, on the subject of this 
Essay, that trade secrecy law protects machine learning too strongly and should be modified 
accordingly. 
 128. Price, Expired Patents, supra note 26, at 1632–40. 
 129. See id. 
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information would include manufacturing processes, interchangeability 
standards, or other knowledge that carries through the patent bargain of 
limited monopoly followed by free competition.130 Finally, Jacob Sherkow, 
responding specifically to concerns of irreproducibility of inventions 
disclosed in patent applications, argues that courts and the PTO should 
consider evidence that arises after patent filing in determining when the 
invention is enabled.131 A patent that discloses irreproducible information 
serves no teaching function,132 and irreproducibility is often knowable only 
well after the patent has been filed.133 

A requirement of dynamic disclosure would, however, be well beyond the 
scope of the Patent Office’s current authority. Congress would have to confer 
such authority on the Office, and the political economy of that option 
probably makes dynamic patent disclosure a dead letter.134  

If a risk regulator has jurisdiction over the machine-enabled model, a 
potentially greater level of disclosure through the risk regulator is an option. 
The next Section considers data aggregation and disclosure through the risk 
regulator, in this case the FDA.  

C. AGGREGATION AND DISCLOSURE THROUGH THE RISK REGULATOR 

In the 21st Century Cures Act of 2016, Congress explicitly gave the FDA 
regulatory authority over most clinical interventions enabled by machine 
learning.135 In essence, Congress stated that FDA can regulate software that 
recommends, or makes, clinical decisions in situations where the scientific 
basis for the recommendation is not likely to be independently understood 
by the physician.136 FDA could use this power to require submission of 
training data and model source code for machine learning products that 
recommend or make clinical interventions without sufficient transparency.137  

More broadly, by virtue of its role as the pre-market regulator of 
biological risk and benefit introduced by therapies (both small molecules and 
biologics), FDA has custody of troves of human biological data that could 

 

 130. See id. 
 131. Sherkow, supra note 100, at 907–11. 
 132. Id. at 903–05. 
 133. Id. at 908. 
 134. On the other hand, to the extent that dynamic disclosure results in continuing fees to 
the PTO, there might be more institutional interest than would be initially suspected. 
 135. See 21st Century Cures Act § 3060, 21 U.S.C. § 360j(o) (2018). 
 136. See id. 
 137. Research by one of us indicates that FDA has not, thus far, been asking for disclosure of 
actual training data or model code. See Arti K. Rai, Isha Sharma & Christina Silcox, Accountability, 
Secrecy, and Innovation in AI-Enabled Clinical Decision Software, J.L. & BIOSCIENCES, Nov. 14, 2020, 
at 1, 5, 24. In an interesting recent article, Andrew Tutt invokes the power and reputation that 
the FDA has historically enjoyed and calls for an FDA-type federal agency to monitor performance 
of machine-learning algorithms. See generally Andrew Tutt, An FDA for Algorithms, 69 ADMIN. L. 
REV. 83 (2017) (calling for a federal agency to oversee performance of machine learning 
algorithms). As a consequence of the 21st Century Cures Act, we already have an FDA for certain 
machine learning algorithms. 
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serve as training data for machine learning. Well before recent advances in 
machine learning, FDA’s failure to disclose this data when it was authorized 
to do so as a matter of statute—that is, after statutory IP exclusivities held by 
the data originator had expired—was heavily criticized.138  

As with the Patent Office’s failure to use its power to impose product-by-
process requirements, FDA’s position can largely be traced to political 
economy. And as with the Patent Office, perhaps the advent of machine 
learning will shift the calculus.  

To FDA’s credit, it responded to pressure on data disclosure by setting 
up a pilot program for originators of clinical trial data on branded 
therapeutics that wish to disclose data voluntarily; although the pilot has 
concluded, FDA continues to explore data sharing possibilities.139 As with 
private sector efforts that have also been launched to disclose data,140 this 
voluntary approach may be able to capitalize on the desire of drug makers to 
cultivate an image of trustworthiness with patients, physicians, and the general 
public. 

 In the specific case of machine learning models, a voluntary “Pre-
Certification” program that the FDA is piloting for software products may 
provide a test bed for further experimentation with disclosure. The program 
recognizes the reality that software products, particularly software products 
enabled by machine learning, should be encouraged to change relatively 
rapidly as they incorporate new data. Thus, the current system of pre-market 
approval, together with requirements that the product manufacturer apply 
for updated approval for every subsequent change, is not necessarily an 
optimal structure. 

Under the regime, firms can get pre-certified as “organizations that 
perform high-quality software design and testing.”141 FDA discussion drafts 
indicate that pre-certification would provide a streamlined path to initial 
market entry, and would allow for frequent updates, in exchange for 
continuous monitoring by the FDA of real-world distribution and use. Based 
on these promises by the FDA, multiple major software development firms 
have signed up for the program.142 

 

 138. For a detailed history of the FDA’s failure to exercise its statutory authority, and resulting 
criticisms, see generally Arti K. Rai, Risk Regulation and Innovation: The Case of Rights-Encumbered 
Biomedical Data Silos, 92 NOTRE DAME L. REV. 1641 (2017). That article does not, however, address 
machine learning. 
 139. Press Release, Janet Woodcock, Dir. of the Ctr. for Drug Evaluation & Rsch., FDA, FDA 
Continues to Support Transparency and Collaboration in Drug Approval Process as the Clinical 
Data Summary Pilot Concludes (Mar. 26, 2020), https://www.fda.gov/news-events/press-
announcements/fda-continues-support-transparency-and-collaboration-drug-approval-process-
clinical-data-summary [https://perma.cc/M5JR-Q66K]. 
 140. See Rai, supra note 138, at 1652, 1652 nn.57–58 (discussing efforts by multiple drug 
makers in the Clinical Study Data Repository and by the collaboration between Johnson & 
Johnson and Yale (“YODA”)); see also supra note 64 (describing YODA’s access policies). 
 141. FDA, SOFTWARE PRECERTIFICATION PROGRAM, supra note 29, at 7. 
 142. Danielle Kosecki, How Apple, Fitbit, Samsung and More Are Helping to Modernize the FDA, 
CNET (Sept. 5, 2019, 5:30 AM), https://www.cnet.com/health/how-apple-fitbit-samsung-and-
more-are-helping-to-modernize-the-fda [https://perma.cc/KQ82-J6QJ]. 
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One additional obligation that the FDA could impose (presumably 
within its statutory power since the program is voluntary) is data disclosure 
after a specified period of time, including training data, algorithmic change 
(based on incorporation of new data), and performance attributes. Since the 
FDA would already be actively monitoring data on real-world distribution and 
use, it should be able to enforce that obligation without much additional 
administrative burden. Meanwhile, the pre-certifying firm might be able to 
monetize the mantle of trustworthiness data disclosure could provide, either 
directly or as a defense in any potential product liability action. 

All that said, though we and others have suggested FDA-mediated 
disclosure in different contexts before,143 we should note that not all are 
sanguine about the prospect. Jacob Sherkow and Christopher Scott, while 
recognizing that the FDA does serve an information disclosure role, are 
skeptical of expanding that brief, at least in the context of manufacturing 
vectors for gene therapy: “One can . . . imagine a regime where the FDA is 
both statutorily authorized and administratively willing to mandate maximum 
disclosure regarding inputs for therapeutic manufacture. But that is purely 
imaginative. The FDA is both legally prohibited from requiring the disclosure 
of confidential business information from clinical trials and culturally 
unwilling . . . .”144 One need not agree with their legal conclusion145 to agree 
that the political economy of enhanced regulatory disclosure represents a real 
challenge.146 

D. DEMAND-SIDE DISCLOSURE 

Payers present another important opportunity for disclosure that is 
underdeveloped in the literature that applies specifically to health 
innovations. For health technologies, payers—whether insurers, integrated 
health systems, or public payers like Medicare or Medicaid—serve 
gatekeeping roles by determining which technologies will be reimbursable.147 
One of us has suggested, in work with Rebecca Eisenberg, that insurers thus 
have an important role in innovation.148 Some payers are already playing this 

 

 143. See, e.g., Eisenberg, supra note 27, at 380–84 (clinical trial data); W. Nicholson Price II, 
Regulating Secrecy, 91 WASH. L. REV. 1769, 1802–12 (2016) (biopharmaceutical product details 
generally); Price, supra note 28, at 465–73 (information about medical algorithms); Price & Rai, 
supra note 54, at 1053–56 (biologic manufacturing processes); Rai, supra note 138, at 1666 
(diagnostic test data); see also Rachel E. Sachs & Thomas J. Hwang, Increasing the Transparency of 
FDA Review to Enhance the Innovation Process, in TRANSPARENCY IN HEALTH AND HEALTH CARE IN 
THE UNITED STATES 185, 185 (Holly Fernandez Lynch, I. Glenn Cohen, Carmel Shachar & 
Barbara J. Evans eds., 2019) (existence and details of investigational new drug clinical trials). 
 144. Sherkow & Scott, supra note 53, at 1544. 
 145. See, e.g., Eisenberg, supra note 27, at 380 (“[T]he statutory language invoked in support 
of [the FDA’s] position [on withholding clinical data from public disclosure] is ambiguous.”); 
Rai, supra note 138, at 1655 (“[T]he FDA’s position [on disclosing trial data] appears overly 
conservative.”). 
 146. See, e.g., Rai, supra note 138, at 1657–58 (noting the FDA’s continued resistance to 
releasing data, even with greater statutory authority). 
 147. Eisenberg & Price, supra note 27, at 26. 
 148. Id. at 5. 
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technology-evaluation role, including by analyzing the troves of health data 
they already possess.149 Payers could extend this function by, for instance, 
disclosure of the sort we have been describing. Although large private insurers 
have substantial power on their own,150 Medicare is a particularly influential 
payer in this space, because where it leads, many private insurers follow.151 
Thus, policymakers could exert potentially substantial influence on the 
disclosure of machine-learning tools by changing Medicare policy to require 
some forms of disclosure as a condition of payment—with the potential that 
private payers might follow suit.152 

Such disclosure could, at a minimum, be to field experts within the payers 
themselves. That is to say, payers can employ experts in health big data and 
machine learning that can evaluate disclosures by algorithm developers. This 
role would likely fit more neatly within a parallel oversight role (that is, 
ensuring performance and efficiency of the purchased technology) than a 
public knowledge-development role, but could still be useful.153 

Payers could also require more public disclosure, enabling the work of 
field experts more generally. As a condition of agreeing to reimburse a 
technology, payers could require that technology developers make available 
their data, development practices, and validation practices to either the 
general public or to a subset of qualified field experts.154 Such a requirement 
could align with payers’ own goals in several ways. It could outsource part of 
the parallel oversight role, enabling academics, nonprofits, or other field 
experts to find problems or to validate algorithmic development and 
performance.155 The development of fundamental knowledge could also help 
promote further technological development that might be of value to payers. 
And if understanding does indeed increase user trust and consequent 
adoption, such increased adoption of money-saving technologies could 
redound to payer benefit.156 

Finally, payers could also potentially advance knowledge by disclosing  
the data they already have, including algorithmic performance data and  

 

 149. Id. 
 150. See id. at 27 (discussing the role of market concentration among health insurers). 
 151. Rachel E. Sachs, Prizing Insurance: Prescription Drug Insurance as Innovation Incentive, 30 
HARV. J.L. & TECH. 153, 196–200 (2016). 
 152. See id. at 201–08 (suggesting deliberate use of Medicaid policy to set innovation 
incentives). 
 153. See supra text accompanying note 81 (discussing the potential for disclosure to enable 
private parallels to regulatory oversight). 
 154. See supra note 64 and accompanying text. 
 155. See, e.g., Price, Big Data, Patents, & Medicine, supra note 17, at 1451–52 (suggesting 
“bounties” for entities that validate the performance of (or expose flaws in) algorithms developed 
by others). 
 156. If new technologies are more expensive, this could have deleterious consequences for 
payers as users demanded more expensive treatments. See, e.g., Eisenberg & Price, supra note 27, 
at 5 (discussing this point). 
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other real-world evidence.157 While these are not data about algorithmic 
development, they could shed light on performance and places where 
algorithmic results are in tension with ground truth, opening possibilities for 
further probing. Such disclosure raises challenges endemic to those of health 
data: Electronic health records and claims data often have substantial quality 
problems because of the clunkiness of health data systems,158 incentives to 
record skewed data for payment purposes,159 and the general fragmentation 
of health data.160 

It is worth noting that the role of insurers is different outside of the 
health sphere. In health, insurers can exercise control by deciding whether 
or not to pay for a technology (and paying for technology absent insurance is 
often impossible). In other fields, insurers can already exercise control by 
deciding whether or not to issue a policy that may be a legal or practical 
requirement for a certain activity.161 Auto insurers, for instance, currently 
constrain individual driving behavior through underwriting and rate-setting 
of individual drivers.162 But auto insurers could similarly exercise their 
 

 157. Ross Koppel & David Kreda, Health Care Information Technology Vendors’ “Hold Harmless” 
Clause: Implications for Patients and Clinicians, 301 JAMA 1276, 1277 (2009). 
 158. Sharona Hoffman & Andy Podgurski, Big Bad Data: Law, Public Health, and Biomedical 
Databases, 41 J.L. MED. & ETHICS 56, 57 (2013) (describing quality issues in big data in medicine). 
 159. See generally ROBERT WACHTER, THE DIGITAL DOCTOR: HOPE, HYPE, AND HARM AT THE 
DAWN OF MEDICINE’S COMPUTER AGE (2015) (discussing the integration of technology into the 
medical field and its different effects on the profession, particularly the doctor-patient relationship). 
 160. See W. Nicholson Price II, Risk and Resilience in Health Data Infrastructure, 16 COLO. TECH. 
L.J. 65, 69–73 (2017) (describing fragmentation of health data systems). That said, the recent 
rush of technology firms to collaborate with hospital systems to secure access to EHR documents, 
see generally I. Glenn Cohen & Michelle M. Mello, Big Data, Big Tech, and Protecting Patient Privacy, 
322 JAMA 1141 (2019), does suggest that problems with quality are not insuperable. See, e.g., 
Emily Schweich, The University of Chicago Medicine Collaborates with Google on Machine Learning 
Research, AM.’S ESSENTIAL HOSPS. (Aug. 14, 2017), https://essentialhospitals.org/university-
chicago-medicine-collaborates-google-machine-learning-research [https://perma.cc/7Z8D-
PNPD] (“Researchers from UChicago Medicine . . . are teaming with Google to use machine 
learning to find patterns in electronic health records (EHRs) and use those patterns to predict 
readmissions, complications, and other hospital-acquired conditions.”); Natasha Singer & 
Daisuke Wakabayashi, Google to Store and Analyze Millions of Health Records, N.Y. TIMES (Nov. 11, 
2019), https://www.nytimes.com/2019/11/11/business/google-ascension-health-data.html 
[https://perma.cc/LGL7-38H2] (“In a sign of Google’s major ambitions in the health care 
industry, the search giant is working with [the Ascension] hospital system to store and analyze 
the data of millions of patients in an effort to improve medical services . . . .”). 
 161. See generally Omri Ben-Shahar & Kyle D. Logue, Outsourcing Regulation: How Insurance 
Reduces Moral Hazard, 111 MICH. L. REV. 197 (2012) (discussing the general phenomenon of 
regulation by insurers and providing examples); Kyle D. Logue, Encouraging Insurers to Regulate: 
The Role (If Any) for Tort Law, 5 U.C. IRVINE L. REV. 1355 (2015) (describing why insurers often 
regulate indirectly rather than mandating behavior); John Rappaport, How Private Insurers 
Regulate Public Police, 130 HARV. L. REV. 1539 (2017) (discussing how private insurers regulate 
the conduct of police agencies). Health insurers cannot typically exercise this sort of influence 
over individual insured behavior because federal law requires community rating, whereby 
individuals in a certain group are all charged the same rate, and guaranteed issue, whereby 
insurers are required to issue policies if sought. Patient Protection and Affordable Care Act  
§ 1201, 42 U.S.C. §§ 300gg–300gg-1 (2018). 
 162. Kyle D. Logue, The Deterrence Case for Comprehensive Automaker Enterprise Liability, 2019 
J.L. & MOBILITY 1, 15–17. 
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influence to require disclosure of information about self-driving vehicle 
algorithms in much the same way as described above—whether to the insurers 
themselves or to field experts more broadly—by, for instance, refusing to 
insure a car with autonomous capabilities unless data about its algorithms was 
disclosed.163 Such disclosures could inform not only the development of the 
tools (autonomous driving algorithms) but also knowledge about the underlying 
systems (traffic dynamics, the prevalence of road hazards, and other risk 
elements).  

To the extent that insurers are concerned about systemic risk,164 
disclosure requirements could also reduce that risk and might therefore be of 
interest. Notably, these insurer actions are often less amenable to policy action 
because non-health insurance markets may lack a parallel to the massive, 
public, market-leading Medicare program. There is no massive federal auto 
insurer that the market follows, for instance. Thus, innovation policy 
interventions aiming to facilitate disclosure by non-health insurers would 
likely be more indirect. Nevertheless, the possibility of disclosure-forcing 
behavior by private, non-health insurers may be an important piece of the 
disclosure picture for machine learning tools. 

E. OBJECTIONS AND INTERNATIONAL IMPLICATIONS 

We address briefly a set of objections to our proposals. Most of these 
objections flow from the potential harms from disclosure that we noted 
earlier. These harms may have particular salience when placed in an 
international context. 

First, in certain contexts, data disclosure may include disclosure of 
information that is traceable to an individual or could, if combined with other 
sources of data, be made traceable to an individual.165 Although federal law 

 

 163. The economics of such demands need study. Perhaps drivers would flock to non-
disclosure-requiring insurers, creating competitive pressure against requiring disclosure. But in 
the story suggested here, insurers gain enough information from disclosure to price more 
accurately or to reduce risk better, such that they receive a competitive advantage from that 
disclosure. The growing presence of systems to record driving behavior suggests at least the 
possibility of insurer-mandated disclosure. Lilia Filipova-Neumann & Peter Welzel, Reducing 
Asymmetric Information in Insurance Markets: Cars with Black Boxes, 27 TELEMATICS & INFORMATICS 
394, 394 (2010).  
  The story of insurers for fully autonomous vehicles, in a future system, is likely to be 
governed by product liability—but that’s a different story. See generally Kenneth S. Abraham & 
Robert L. Rabin, Automated Vehicles and Manufacturer Responsibility for Accidents: A New Legal Regime 
for a New Era, 105 VA. L. REV. 127 (2019) (describing the current landscape, near future, and far 
future and proposing a new liability regime). 
 164. U.S. health insurers seem to be less concerned with overall systemic risk and costs, 
perhaps because the fragmentation of the American health-care system means that the costs of 
risks for any given patient are likely to be borne by someone else if those risks manifest in the 
future—and that someone else will be the government through Medicare if the risks happen far 
enough in the future. Eisenberg & Price, supra note 27, at 22 n.119. 
 165. See W. Nicholson Price II, Margot E. Kaminski, Timo Minssen & Kayte Spector-Bagdady, 
Shadow Health Records Meet New Data Privacy Laws, 363 SCIENCE 448, 448–50 (2019) (detailing 
how third parties have developed “shadow health records”); Cohen & Mello, supra note 160, at 
1141 (noting that, in today’s world, the quantity of information about individuals gained from 
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in the United States has, at least thus far, viewed removal of key identifiers 
from data, combined with various anti-discrimination safeguards, as providing 
sufficient protection against (respectively) traceability and harm,166 numerous 
commentators have criticized federal law.167  

More concretely, various regimes (including certain states with the 
United States, such as California) have moved beyond U.S. federal law.168 The 
European Union’s General Data Protection Regime, for instance, creates 
strong privacy protections.169 Disclosure of underlying data from regimes with 
strong individual privacy protections faces additional hurdles; machine-
learning developers with models trained on EU and U.S. data would have a 
harder time meeting disclosure mandates than those with models trained on 
U.S. data alone.170 This disparity could bias the types of disclosure and the 
contours of resulting scientific endeavors. 

A second group of concerns arise from competition among jurisdictions 
for machine-learning developers. If disclosure regimes are considered 
onerous, we might see machine-learning developers move to jurisdictions with 
weaker disclosure regimes, potentially promoting a race to the bottom or 
preventing disclosure efforts from getting off the ground. To the extent that 
disclosure is tied to the locus of the market, this concern may be ameliorated; 
if developers want to use machine-learning algorithms in products sold in the 
United States, moving the firm to a less-disclosure-promoting jurisdiction will 
not relieve them of obligations tied to U.S. markets. 

The third set of concerns arises from what one might consider data 
protectionism. If the United States were to implement policies designed to 
force or encourage disclosure, and other jurisdictions did not—or, indeed, 
 
their internet activity, their smartphone geolocation data, and “highly penetrant and often 
interlinked” EHRs and the technology that compiles this information “mean that individuals can 
often be identified in deidentified data by triangulating data sources”). 
 166. Health Insurance Portability and Accountability Act of 1996, 45 C.F.R.  
§ 164.514(b)(2)(i)(A)–(R) (2017) (listing the 18 key identifiers to be removed). 
 167. See Price & Cohen, supra note 79, at 39; Mark A. Rothstein, Is Deidentification Sufficient to 
Protect Health Privacy in Research?, AM. J. BIOETHICS, Sept. 1, 2010, at 3, 9 (concluding that the 
deidentification requirements of 45 C.F.R. § 164.514 and the Federal Policy for the Protection 
of Research Subjects (Common Rule) are “insufficient to protect privacy and respect autonomy 
in research” and that “[i]t is indefensible from technical, ethical, and policy standpoints to 
continue drawing a bright-line regulatory distinction between identifiable and deidentified 
health information”). 
 168. Price et al., supra note 165, at 448. 
 169. See Paul M. Schwartz & Karl-Nikolaus Peifer, Transatlantic Data Privacy Law, 106 GEO. 
L.J. 115, 128–29 (2017) (“The EU’s recourse to a regulation follows from its recognition of 
privacy as a human right and the high status of the data subject. . . . [Thus], the GDPR provides 
directly binding statutory protection in EU law for her.”); Kaminski, supra note 30, at 192 
–93 (“The GDPR contains a significant set of rules on algorithmic accountability, imposing 
transparency, process, and oversight on the use of computer algorithms to make significant 
decisions about human beings,” and Kaminski understands it “to create a broader, stronger, and 
deeper algorithmic accountability regime than what existed under the EU’s Data Protection 
Directive (DPD).”). 
 170. As noted above, supra note 66, we elide privacy issues in this Essay by assuming disclosure 
mechanisms that sufficiently protect individuals from harm, but the difficulty in designing such 
mechanisms will vary based on jurisdiction. 
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adopted policies that explicitly discouraged disclosure—resulting dynamics 
would be complex, since disclosure can easily travel across international 
borders. We might expect firms in non-disclosing jurisdictions to gain a 
competitive advantage because they can use both their proprietary data and 
also data disclosed under policies like those we have suggested here. These 
concerns are obviously quite salient to U.S. policymakers, particularly in light 
of the strong interest expressed by competitors like China in machine 
learning.171 

As noted earlier, our levers for promoting disclosure do not extend to 
contexts such as national security where adversarial attack and gaming are 
first-order concerns. Particularly outside those contexts, we could imagine 
that a disclosure-promoting environment might create localized benefits that 
could counteract competitive advantages from data protectionism, looking to 
the rich literature on trade secrecy, noncompete and nondisclosure agreements, 
and innovation clusters.172 These complex issues provide rich topics for future 
work. 

V. CONCLUSION  

The various potential policy levers described in Part IV have their own 
strengths and weaknesses. Promoting disclosure to field experts will likely 
involve some combination of those levers, depending on the context. For 
instance, regulator-mediated disclosure, while potentially very powerful in the 
area of life sciences, will be unavailable in fields without strong regulatory 
gatekeepers. For the life sciences, an area where we have suggested that 
algorithmic disclosure is particularly salient, all the levers we mention are 
available, and the right combination depends on some mixture of political 
economy, technocratic efficiency, and redundancy to ensure effectiveness. We 
aim to begin that conversation, not to complete it. 

At the end of the day, our argument here is simple. There is an ongoing 
conversation about the extent to which machine-learning algorithms need to 
be disclosed to those impacted directly by the technology, whether users of 
the algorithms or people about whom decisions are made. This is a valuable 
conversation, but it is incomplete.  

There exists a separate set of reasons to promote disclosure about 
algorithms, on many levels, to field experts. These reasons emerge from, but 
also go beyond, traditional arguments in favor of open science. They relate to 
the need to sift out from the universe of non-intuitive correlations that 
machine learning can generate the most promising new hypotheses for 

 

 171. Sarah O’Meara, China’s Ambitious Quest to Lead the World in AI by 2030, 572 NATURE 427, 
427 (2019) (describing China’s goal “to lead the world when it comes to artificial intelligence” 
and noting that China’s 2017 “New Generation Artificial Intelligence Development Plan[] has 
spurred myriad policies and billions of dollars of investment in research and development”). 
 172. See generally LOBEL, supra note 74 (advocating for a new view of what creates successful 
innovation ecosystems); Orly Lobel, Noncompetes, Human Capital Policy & Regional Competition, 45 
J. CORP. L. 931(2020) (outlining the current state of research on human capital and economic 
competition and anticipating future areas of research in the field). 
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further investigation. To the extent this happens, machine learning models 
may help us not only with prediction but with fundamental understanding of 
the opaque real-world systems that the models are meant to probe. Those 
reasons should be part of the conversation—and should, we argue, drive us to 
adopt a set of innovation policy levers to promote robust disclosure of 
algorithms’ datasets, methods, and parameters to experts in the field. 

 


